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Abstract

Time preferences are central to the study of finance, but our empirical knowledge of
discount factors remains limited and heavily shaped by asset-pricing evidence from the
small subset of households who hold significant financial wealth, or from lab experiments
of unrepresentative populations in unusual conditions. This paper argues that meaningful
evidence about intertemporal preferences can be extracted from the credit market and,
perhaps surprisingly, from default decisions. I develop a unified framework that uses (i)
observed interest rates as revealed-preference lower bounds on constrained households’
intertemporal marginal rates of substitution, and (ii) comparative statics of repayment
and default from experimental and quasi-experimental settings as sufficient statistics
for underlying impatience. I apply these methods to administrative credit-report data
covering millions of auto loans, as well as a meta-analysis to existing experimental and
quasi-experimental studies. Time preference heterogeneity emerges as large, systematic,
and economically significant. The bottom half of the wealth distribution appears dramati-
cally more impatient than standard calibrations assume, with implied annual discount
factors often far above 20% annually in low-income populations. I discuss theoretical in-
terpretations, implications for structural modeling, and consequences for policies targeted
at liquidity- or credit-constrained households.
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1 Introduction

I ask in this paper what we can learn about households’ subjective time value of money
from the liability side of household balance sheets when they do not have the opportunity to
equalize their expected utility across time.

The subjective time value of money, also known as the discount factor of utility, is a
primitive object in the study of finance. Any consumption-based asset pricing model with
separable utility! assumes that individuals maximize a function of the form

max Eo [i B U (Cy) (1)

t=0

Where the choice variable C is the consumption strategy which produces the consumption
series Cy, and U() is the single-period utility function. The subjective discount factor B plays
a crucial role in all such models, and along with the consumption and/or wealth growth
processes, defines the market price of risk-free debt. Indeed, in representative-agent models
where there is only a single discount factor to measure, the price of risk-free debt r is given by

the Euler equation

Et [U' (Cpy1)]
u(C)
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The price of risk-free government bonds is therefore naturally used as a chief data moment
to match when inferring the discount rate §, as in Auclert et al. (2019), Lustig and Chien (2005),
Bansal and Yaron (2004), Alvarez and Jermann (2001); far too many to be exhaustive. Other
approaches in the asset pricing literature such as matching the capital-output ratio (Guvenen
(2006)) or the zero-beta interest rate (Di Tella et al. (2024)) likewise rely on aggregate asset
market data where the representative investor is rich. Indeed, in the United States, only 6.4%

of households hold government savings bonds, the asset used to infer the social discount rate

recommended by the White House (Board of Governors of the Federal Reserve (2022), The

T discuss non-separable utility functions in Section 6.



White House (2023)). As I show in Section 2, only 12% of households participate in any kind
of risk-free financial market investment (excluding transaction accounts), and 75% of risk-free
investments are owned by the top 1%.

Macroeconomic research has largely considered the actual time preferences of infra-
marginal investors, who are largely hand-to-mouth, as irrelevant — as Auclert et al. (2019)
note, public asset market prices are almost totally invariant to the exact discount rates for the
less patient and less wealthy segment of households (borrowers), so long as they are below
those of the patient and wealthy who are the marginal investors in such markets. Essentially,
the time preferences of constrained agents are not identified in common heterogeneous agent
models, as constrained agents have no opportunity to express their impatience in the presence
of credit constraints.

Why is this the case? Crucially, laws permitting the default of debt, which may be called
“bankruptcy” or “limited liability” laws, make it impossible for households to issue risk-free
debt. Households who are net borrowers instead borrow with risky, defaultable debt. Thus, it
is infeasible for the vast majority of households to sell risk-free debt, and most choose not to
purchase it either — retirement savings is mostly done in equity, not debt (Board of Governors
of the Federal Reserve (2022)). Therefore the price of risk-free debt is uninformative about the
time preferences of all but the richest households, other than to establish a lower bound on
their impatience which may be arbitrarily far away from their actual time preferences.

How then should we estimate the time preferences of households who live close to hand-
to-mouth and have negative net asset positions for most of their lives? Other approaches
include laboratory experiments designed to elicit discount rates of participants (Coller and
Williams (1999), Harrison et al. (2002) and many, many others). An obvious criticism of such
studies is that convenience samples in university laboratory studies are not representative
of overall populations. Furthermore, the behavior of individuals in laboratories does not
consistently predict their behavior in everyday life. For these reasons governments by and
large do not use the discount rates which result from such laboratory procedures in policy

analyses.



Papers which do rely on real-stakes revealed preference do consistently find extremely high
rates of time preference over short time periods, often of over 50% in hyperbolic (3, J) models
as reviewed by Laibson et al. (2024). While Ganong and Noel (2019) do use a heterogeneity
exercise to estimate that about 1/3 of consumers in their data are extremely impatient “low-”
types, they stop short of producing full distributional estimates of time preferences. My
estimates in Sections 3 are therefore useful for mapping out the full distribution.

Why is this exercise important? Accurately characterizing the discount rates of represen-
tative populations, not just representative populations, is broadly and deeply important for
public finance, climate finance, household finance, and ethics. The United Kingdom and
France both publish discount rate schedules at time horizons from 1 to 350 years to be used
in cost-benefit analyses of proposed policies (Arrow et al. (2014)); the United States uses
a constant discount rate tied to the market prices of government bonds, and consequently
recently lowered the advised government discount rate from 3% to 2% per year (The White
House (2023)). Hendren and Sprung-Keyser (2020) use 3% as their base discount rate for
evaluating the Marginal Value of Public Funds (MVPF) for various policies, and in robustness
exercises calculate MVPFs for discount rates up to 15% per year. They find that this difference
is material for the cases of early childhood vs. adult education: early childhood education
creates far superior value at a low discount rate, but adult education triumphs at a high
discount rate.

Understanding the degree of impatience, per se, and its distribution in the population
is important as well for analyzing public policy problems such as bargaining between two
different parties who may have different levels of impatience — Rubinstein (1982) shows that
in an alternating offer negotiation, the more patient party wins more surplus. This may be
applied, for example, to understanding collective bargaining between an impatient labor
union and a patient employer. It is also critical for welfare analysis of any intertemporal
government policy — for example, DeMarzo et al. (2023) show that patient citizens are harmed
by a government who is more impatient than they are being able to borrow. Welfare anal-

ysis of government debt policy (Indarte and Kanz (2023)) and climate policy (Farber and



Hemmersbaugh (1993)) likewise crucially depend on citizens” impatience. Disentangling
the different roles of (1) changes in marginal utility from (2) impatience is also important
for understanding the demand for financial services in the economy. If household demand
for credit is driven by expectations of high consumption growth, it is more variable and
dependent on economic conditions. If it is driven by impatience, then it is more primitive and
we may expect it to be a more permanent fixture in any counterfactual economy.

I develop two complementary empirical strategies. First, because credit is supplied along
an upward-sloping schedule, the highest interest rate at which a household borrows provides
a lower bound on its true discount rate. Second, in settings where borrowers experience
quasi-experimental variation in short- or long-term payments, the resulting changes in default
probability reveal forward discount rates directly. I show that these comparative statics are
sufficient to recover impatience without observing consumption, income paths, or full loan
histories.

Integrating these approaches yields new empirical estimates of patience across the house-
hold distribution. Using data from the Survey of Consumer Finances (SCF), administrative
credit-report data, and estimates from quasi-experimental studies, I find striking hetero-
geneity. Among credit-constrained households—those most likely to be directly affected by
public policy interventions involving liquidity, repayment terms, or debt relief—discounting
is extremely steep. These results have direct implications for consumer-credit regulation, opti-
mal dynamic taxation, and the design of social insurance programs. They also provide new
structural moments for calibrating or estimating life-cycle models that incorporate borrowing,
liquidity constraints, and default.

The remainder of the paper proceeds as follows. Section 2 documents the limited par-
ticipation of U.S. households in financial markets and illustrates why asset prices provide
little information about the majority of households” discount factors. Section 3 develops the
revealed-preference lower-bound approach, drawing on observed borrowing rates. Section 4
introduces a sufficient-statistics method for inferring impatience from repayment and default

behavior. Subsequent sections apply these methods to auto-loan data, explore heterogeneity,



and discuss extensions. The paper concludes by considering the broader implications of steep

impatience for models of household behavior and for policy.

2 Financial Market Participation in the United States: The
Case Against Interpreting Financial Market Prices as Dis-
count Rates

A natural starting point is to ask: for which households can asset prices reveal time prefer-
ences? Standard macro-finance arguments rely on interpreting observed risk-free or risky
returns as the implicit discount rates of the marginal investor. But this logic depends on
broad participation, or at least on marginal pricing being representative of the population
whose preferences we seek to identify. For households that do not save significant amounts in
asset markets, interest rates on Treasury bills or returns on equity convey little about their
intertemporal tradeoffs. The price of risk-free bonds (or any other publicly traded asset) is
not informative about the time preferences of households near the median of the distribution
because the typical household does not participate in the risk-free bond market. I demonstrate
just how few households can be said to have any participation in risk-free asset markets using
the 2022 Survey of Consumer Finances, the most comprehensive representative sample that
exists of households’ total financial positions in the United States (Board of Governors of the
Federal Reserve (2022)). The Survey of Consumer Finances is ideal for the purposes of this
exercise due to its comprehensive information about household balance sheets, including
179 variables that I use in this paper. It is also ideal for estimating the entire distribution of
households in the United States due to its rigorous design, implementation, and inclusion of
precise survey weights to match the Current Population Survey on several dimensions.

One major drawback of the SCF is that it does not include detailed repayment and default
information of loans. It only asks survey participants whether they are behind schedule on

each loan, and if they have declared bankruptcy, neither of which are adequate measures of



default on particular loans. I address this in Section 4 with a sufficient statistics approach
that can impute discount rates using already-reported estimates from other papers that study
the impact of contract modifications on default rates. These other papers (e.g. Ganong and
Noel (2020) and Dobbie and Song (2020)) are interested in estimating these causal effects in
the context of direct policy outcome evaluation; my model and framework allows them to be
understood in the broader context of time discounting.

Another limitation of relying on the SCF is that geographic identifiers are redacted for
privacy. This leaves me unable to correlate my measures of impatience and its distribution
with other geographic variables such as demographics, political attitudes, and other economic
outcomes not measured in the SCF. This is a potentially fruitful avenue to pursue in future
work. Older versions of the SCF, e.g. from 1983, do include these geographic identifiers,
although the Federal Reserve Board of Governors does warn that the survey design of the
SCF does not necessarily produce representative samples state-by-state, only within each of
the nine major survey districts which comprise the country.

I calculate total risk-free asset holdings as the sum of certificates of deposit and all federal
bonds. I use the SCF survey weights to sort households into population percentiles of total

holdings of risk-free assets.



Figure 1: Financial Asset Holdings Across the Distribution
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This figure plots SCF households sorted by the percentile of total financial assets (scaled by survey
weights). The y-axis reports average holdings within percentile bins, disaggregated by asset category.
Investment assets are defined as liquid, market-traded assets with long-term cash flows. Risk-free
assets include checking and savings accounts. Other assets include home equity and annuities.

Figure 1 shows the distribution of risk-free asset holdings. Only 12% of households
participate in this market whatsoever, with 75% of risk-free assets being held by the top 1%.

If we are to infer discount rates from asset market data at all, the problem can scarcely
be fixed by trying to infer time preferences from public financial asset market data at all,
even including risky assets. If impatience is negatively correlated with wealth (a natural
assumption), then investors will be few and patient while borrowers are many and impatient.
The marginal investor, the one who is indifferent between borrowing and saving, will therefore
be much wealthier and much more patient than the average person. Di Tella et al. (2024)
calculate the “Zero-Beta Rate” as the return on the lowest-variance portfolio of stocks which
has a zero beta to the market and argue that this rate better represents the true market price of

intertemporal substitution, that is, the rate at which the investor with the dollar-weighted



median demand for borrowing is indifferent between borrowing and lending. They estimate
that this rate has averaged 8.3% per year since 1973 and is highly volatile. There are at least
two reasons, however, why their approach is unfit for the purposes of this present exercise.
For one, the market price of intertemporal substitution is a combination of impatience and
consumption smoothing demand as Equation 2 shows. Secondly, this procedure is silent
on the distribution of time preferences across the entire population and can only identify
the demand for intertemporal substitution of the marginal investor in asset markets. This
may explain why the zero-beta rate that they estimate is so extremely volatile in the time
series: changes in net worth of different segments of the population cause investors to switch
from borrowers to savers or vice versa, shifting the identity of the marginal investor to one
who is much more or much less patient. Finally, the estimates from this exercise are likely
uninformative about primitive characteristics such as impatience, the fundamental object of
interest of this paper, because they are so volatile. I take the view that these highly volatile
discount rate estimates are most likely the result of the identity of the marginal investor

shifting with shifts in economic conditions and the wealth distribution.



Figure 2: Distribution of Investment, Risk-Free, and Other Assets
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Notes: This figure displays the same percentiles as Figure 1, but separates investment assets from
risk-free and other assets. Again, survey weights scale both the percentile ranks and the average values
within each bin. Investment assets are extremely concentrated among the wealthiest households.

How un-representative is the marginal investor in asset markets? Figure 2 shows the
distribution of all financial assets held by households. I exclude pensions and social security

A

as they are not tradable. I classify financial assets into “risk free”, “investment”, or “other”
categories. Investment assets are distinguished from other assets by having long-term cash
flows and being traded in liquid markets. These mostly include stocks and bonds, including
assets held in vehicles such as Individual Retirement Accounts. Other assets are mostly
comprised of home equity, informal loans, and annuities. The bottom third of households
hold no financial assets whatsoever, and the middle third only barely hold small amounts of
non-investment assets. The top 1% holds 47% of all financial assets.

We should conclude from this exercise that the time preference rates implied by the returns

of public assets are completely uninformative about the preferences of roughly 30-70% of the

10



U.S. population.

Figure 3: Liabilities Across the Asset Distribution
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Notes: Households are sorted along the x-axis by total financial assets, as in Figures 1 and 2, but the
y-axis displays average liabilities. Mortgage debt is widespread through the middle of the distribution,
while unsecured debts cluster among the bottom percentiles.

Instead, in this paper I study the information contained in loan transactions and loan
defaults as an alternative source of information about the discount rates of these households.
Figure 3 shows, for households sorted into the same percentile ranks as in Figure 3, their
liabilities instead of their assets.> For credit card balances, I only include The center and
left half of this graph is far more populated than Figures 1 and 2, chiefly with mortgage
debt, motivating my decision to utilize information contained in the debt market, rather than
the asset market, to estimate the time preferences of the full distribution of household time

preferences.

21 confine the analogous graph sorting households by total liabilities to Appendix B. It is uninformative for
this paper’s main exercise because households may have few liabilities either because they are poor and not
creditworthy or because they are rich and not liquidity constrained.
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3 Converting Interest Rates to Discount Rates: The Role of
Income Expectations and Simple Lower Bounds For the

Latter

The interest rates at which borrowers transact does contain direct revealed-preference infor-
mation about intertemporal substitution despite not being sufficient to point-identify it. Due
to classic finance frictions including asymmetric information, lenders require higher interest
rates to extend credit to borrowers perceived as riskier or more likely to default. A household
accepts a loan at the highest rate that does not exceed its true discount rate. Because credit
products are discrete and vary across lenders, we do not observe the precise point at which a
household becomes indifferent. Nevertheless, the maximum observed interest rate among a
household’s active debts provides a lower bound on its underlying impatience.

Staying true to the objective of this paper of relying on revealed preference, I utilize the
interest rates that households borrow at as lower bounds on their prices of intertemporal
substitution. The intuition for this approach is illustrated in Figure 4 schematically. Each
household faces a menu of borrowing opportunities at different maturities and rates. As the
interest rate rises, fewer households are willing to borrow at the margin. The highest rate
at which a household holds debt that is actually accruing interest is, therefore, the highest
observed point where we can rule out the possibility that the borrower is less patient than
that.

Essentially, I assume that individuals face an upward sloping credit supply curve, and
accept offers to borrow at progressively higher interest rates until they are offered a loan at
higher than their true discount rate. Since credit products are discrete, the true discount rate
is therefore unobserved.

For each household in the SCF, I calculate their maximum borrowing rate as the highest
interest rate they are currently paying on debt which is accumulating interest. I include only

loans on which payments are active, not those currently in forbearance — this excludes 67%
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Figure 4: Illustration of Lower Bound Approach
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Notes: This schematic figure illustrates the conceptual framework for interpreting observed borrowing
rates as lower bounds on households’ discount rates. Because the supply of credit is upward sloping
and loan products are discrete, the true discount rate lies at or above the highest observed borrowing
rate.

of student loans. I exclude outlier observations of loans with interest rates above 50% per
year. Unlike Catherine et al. (Forthcoming), who are mainly interested in long-term discount
rates for the purposes of valuing Social Security benefits, I do include credit card debt in this
analysis as it is the marginal credit product used by most households in the sample, and
therefore a valid lower bound for the short-term true discount rate in the model of Figure 4.

Figure 5 shows the distribution of maximum borrowing rates per household. Since credit
card debt in particular continues to represent a puzzle in the literature, in particular the fact
that households with substantial liquid savings often do simultaneously hold credit card debt
(Gross and Souleles (2002)), I calculate these distributions both including and excluding credit
cards. Holding firm to the revealed-preference objective of this paper, I do consider credit
card debt going forward as the marginal borrowing rate for most consumers at short time

horizons and a valid lower bound for their short-run discount rates.
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Figure 5: Distribution of Maximum Interest Rate per Household
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Notes: Panel A shows the distribution of maximum interest rates including credit card debt; Panel B
shows the distribution excluding credit card debt. Debts which are not currently being paid, which
include 67% of student loans, are not included in this graph. The highest interest debt that a household
is currently paying and accruing interest is shown. Represented in these chart are the 86% of Americans
who are paying interest on debt.

The modal maximum borrowing rate is 18%, which continues to be the dominant default
credit card interest rate in the marketplace since it was the most common maximum legal
interest rate in the United States going back to when credit card interest rates were regulated
at the state level (Hall (2024)). Even excluding credit cards completely, over 25% of households
borrow at more than the current treasury rate of 5% per year.

Borrowing rates also display a term structure — they are not constant over time. Indeed,
the UK and French governments explicitly use downward-sloping time discount rates in
cost-benefit analysis, although the United States does not (Arrow et al. (2014), The White
House (2023)). The “yield curve” (the term structure of risk-free interest rates) is a key object of
study in macro-finance and generally slopes upward, unlike the UK and French governments’
discount rate schedules which are downward-sloping. Taken at face value, this result would
appear to imply that the yield curve’s downward slope is due to a term premium demanded
by lenders; not to demand by borrowers.

To understand the term structure of household discount rates, I construct a product-
level dataset of all household debt products in the Survey of Consumer Finance. Table 1

summarizes this product-level dataset in terms of the number of debt products per household.
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Figure 6: Distribution of Maximum Interest Rate per Household
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Notes: Debts which are not currently being paid, which include 67% of student loans, are not included
in this graph. The highest interest debt that a household is currently paying and accruing interest is
shown.

Of households with debt, the majority have only one or two debt products, but a small tail of
households have as many as 11 different debt products.

It is critical to remember that these are lower bounds for r and not j, as used in Equation
2. Section 3 clearly explains and estimates the relationship between r and B, the difference
between them being consumption-smoothing demand (the term % in Equation 2. I

estimate the missing term using the life-cycle model of Guvenen et al. (2021) in the upcoming

subsection.
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Table 1: Households by Number of Debt Products

Products Households Proportion

1 5533 0.35
2 4615 0.29
3 2851 0.18
4 1574 0.10
5 765 0.05
6 336 0.02
7 146 0.01
8 78 0.00
9 30 0.00
10 5 0.00
11 10 0.00

Notes: All households in the SCF with debt who are making payments and accruing interests are
included in this table.

Table 2: Debt Products by Type

Product Avg. Balance Avg. Rate Term (Yrs) Proportion
Credit Cards $4694 16% <1 0.31
Mortgages $212911 3.6% 26 0.23
Auto Loans $16173 5.7% 52 0.23
Education Loans $30674 5.5% 16 0.12
Consumer Loans $5919 7.6% 3.9 0.04
Timeshare Loans $320192 4.6% 23 0.03
Lines of Credit $70384 6.5% <1 0.03
Home Improvement Loans $24651 4.6% 8.6 0.01

Notes: All household debt liabilities in the SCF on which payments are being made and interest is
accruing are included in this table.

3.1 Relating Interest Rates to Discount Rates: The Role of Expected Con-

sumption Growth
Recall that the Euler Equation 2 relates expected consumption growth to the pure impatience
parameter B and the representative-agent interest rate r. Rearranging this equation slightly

and taking logs, I can see how the lower bound spot rates, which are analogous to r, are

related to impatience (pB):
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Figure 7: Household Debt by Duration and Interest Rate
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Notes: This heat map shows the observed interest rates and maximum durations of every household
debt product in the 2022 Survey of Consumer Finances as well as an OLS trendline. Densities are
scaled by survey weights.

J/

<z = —log(B) +log E: [U' (Cy11)] —logU' (C) (3)

intertemporal demand impatience SMoo thir:é demand

Equation 5 shows the relationship between impatience per se, intertemporal demand;
which intuitively the market interest rate above which an individual wishes to be a saver and
below which an individual wishes to be a borrower), and consumption smoothing demand. I
adjust these estimates for consumption smoothing demand using the detailed and realistic
life-cycle model of Guvenen et al. (2021), which is also used by Catherine et al. (Forthcoming)
to estimate the distributional effects of Social Security on wealth inequality. Intuitively,

individuals may demand credit because they are simply impatient, or because they expect to
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be wealthy tomorrow. Indeed, John Steinbeck famously coined the saying that the poor in
America “see themselves as temporarily embarrassed millionaires”. The life-cycle model is
designed to adjust the estimates of r to give estimates of f which are robust to Steinbeck’s
critique.

Specifically, for workers between ages 25 and 65, annual earnings L;; are given by:

Li=(1- V;‘)e(g(t)+ai+ﬁit+z§+s§) (4)
Where the variables therein are given by the following processes:

Persistent component zZh=pz. |+l 4.1)
(

, N (py1,02,) withprobp
Innovations 0y~ e : 4.1)

N (py 2, 0,?/2) with prob1 — p;

\

Initial Condition zh ~ N(0,02)) (4.3)

(

, N (per,02,)  withprob p
Transitory shock g} ~ vl ) (4.4)

N (ueo, (782,2) withprob1 — p,
;
0 with prob 1 — p,(t,z1)
Nonemployment duration v; ~ (4.5)
min{1, Exp{A}} withprob p,(t,zi)

i i
ea+bt+czt +dztt

Prob. of Nonemp. shock  pl(t,z;) = (4.6)

In the SCF, I observe an individual at a point in time at a certain age, labor income,
and employment status, allowing me to estimate the distribution of individuals” expected
earnings at the 1 year, 5 year, and 10 year horizons. This process is explained in detail, and
the calibration is provided, in Appendix C. Essentially, I first reverse-engineer the persistent
state variable z. from the observed values of income. When an individual is unemployed I
impute it using the expected income variable in the SCF, which essentially is expected income
in the individual’s counterfactual state of employment. I estimate the age-specific average

function g(t) as a quadratic equation of log unemployment-adjusted income.
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In principle, estimating the idiosyncratic level and slope parameters &’ and ' separately
from the state variable z requires observing the full history of workers’ earnings paths. Lack-
ing that information in the SCF, I take a conservative approach which both (1) minimizes
the variance of workers” expected earnings path and (2) maximizes heterogeneity between
workers, in order to give this model the best possible chance to match the observed high
and variable interest rates at which households are observed to borrow. Details are given
in Appendix C. Intuitively, I matching each households’ deviation from the age-specific
unemployment-adjusted earnings function and assign them idiosyncratic level and slope
parameters &’ and B’ consistent with their relative position in the distribution and the uncondi-
tional marginal distributions of those variables. The remaining parameters are taken directly
from the calibration in Guvenen et al. (2021). The result of this is an extremely sophisticated
projection of the expected future income of every household in the SCF conditional on their
primary earner’s age, the household’s present income, and employment status.

I perform several exercises to validate that this model produces reasonable implied esti-
mates of income growth. Even though the model only takes as an input households” income
and primary-earner’s age, the model-implied estimates correlated with households” sub-
jective levels of optimism about income growth according to the SCF. Table 3 shows the
model-implied income growth estimates disaggregated by households’ reported levels of
optimism, which are reported as either above, equal to, or less than inflation to the SCF

sSurveyors.

Table 3: Model-Implied Income Growth Expectations by Subjective Optimism Levels

Optimism E[AL;y1] N

>Inflation  0.0315 2900
=Inflation  0.0279 5561
<Inflation  0.0274 4609

Notes: The categorical “Optimism” variable is taken from SCF question x7364 and asks whether the
respondent expects their family income to grow more, the same, or less than inflation over the next
year. AL is an abbreviated notation meaning log L;11 — log L;.

As can be seen from the table, there is a 40 basis-point gap, or 15% of the base value, in the
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model-implied income growth expectations of those who report having high income growth

expectations over those who do not.

Figure 8: Model-Implied E[AL; | by Age and Income
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Notes: Lines show the implied expected growth rate of log income at the k-year horizon, denoted
E[AL;,t], aggregated unconditionally by age and by income ventiles. Standard deviations of each
variable within each age group and income group are depicted as error bars. 1y, 5y, and 10y implied
expectations are shown.

I also plot the level and spread of these estimates by each of age and income uncondi-
tionally. Figure 8 shows in two panels the distribution of these estimates. There is a clear
and consistent downward slope with regards to age, as is to be expected. Within each age
group, there is a dispersion of expectations, with standard deviations depicted in error bars.
The pattern with regards to income ventiles is less consistent. In all cases, the expectations
at each horizon are tightly correlated. Overall, these validation exercises confirm that the
model produces estimates of expected income growth as a function of age and income that
are consistent with theory and with subjective expectations of income growth.

I now turn to the question of whether these income growth expectations predict borrowing
behavior. Equation 5 predicts that intertemporal demand r is is the sum of the pure impatience
parameter B and the demand for intertemporal smoothing, which is governed by expected
income growth. If individuals have CRRA preferences with risk-aversion parameter -, then

equation 2 can be rewritten as
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—log B =r — y(E¢[ALt41]) (5)

Thus, if I empirically estimate the equation

Tipg1 = 00 + 0 E[ALi ;] + &

The empirical estimate of ay should exactly line up with the risk-aversion parameter v,
and all remaining heterogeneity in ¢;; can be attributable to heterogeneity in the impatience
parameter B. Table 4 reports the results of this exercise. I use the 1-year model-implied
growth rate in all specifications because, as Figure 8 shows, the model-implied growth rates
at 1-10-year horizons are all tightly correlated.

The first thing to observe is that the R? of these estimates is extremely low, no higher
than 2.2% R? even when including age fixed effects, with within-R? being less than 1% both
when predicting maximum interest rate on any debt and interest rate on non-credit-card
debt at the individual level in the SCFE. The second thing to observe is that it does not matter
qualitatively whether or not age fixed effects are included in the regression in terms of the
sign and significance of the estimates. The most interesting finding is that the sign of the
estimate flips depending on whether credit card debt is included. When credit card debt is
included, households who choose to borrow at the highest interest rates are indeed those
with the highest expected labor income growth, as would be predicted by consumption
smoothing. However, the magnitude of these estimates, which range from 43 to 18 depending
on whether age fixed-effects are included,? are far out of scale with reasonable expectations
of the risk-aversion parameter y.* When credit cards are excluded, the relationship goes the

opposite direction from theory: those borrowing at higher rates have lower expected labor

3 Theory implies that age should not be controlled for; and due to the construction of the model estimates,
including age strongly reduces the coefficients because it is tightly correlated with the constructed measure
of income growth expectations. It is included for completeness and to potentially control for age-specific
heterogeneity in beliefs not captured by the model. In any case it is qualitatively irrelevant and the interpretation
of the results is not affected by its inclusion or exclusion.

%in Epstein-Zin utility, discussed in Section 6.1, replace “risk-aversion parameter " with “inverse-IES parameter
1/1” in this sentence.
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Table 4: Model-Implied Expectations, Not Stated Expecatations, Predict Borrowing Rates

Variables max(r) max(rex cards) max(r) max(rex cards)
E[AL;14] 43.447** -27.06%** 17.75%* -7.612%**
(8.940) (4.896) (3.415) (2.517)
Optimism -0.1044 0.0346 -0.0739 0.0885
(0.2591) (0.2294) (0.1063) (0.0784)
Constant 14.48*** 4.585%**

(0.2643) (0.1948)

Fixed-effects

Age Yes Yes No No
Fit statistics

Observations 13,069 13,069 13,069 13,069
R? 0.01876 0.02189 0.00214 0.00083
Within R? 0.00781 0.00555

Signif. Codes: **: 0.01, **: 0.05, *: 0.1

income growth. In any case, the extremely low R? of these regressions indicate an extremely
poor fit of the consumption-smoothing model for explaining household borrowing rates,
leaving heterogeneity in impatience as the remaining source of variation.

One criticism of this approach is that individuals” expectations may not be either irrational,
or that they may have private information unobserved to the econometrician. However, the
inclusion of the optimism variable from the SCF shows that households’ subjective beliefs
about income growths, controlling for the model’s objective estimates, appear to be entirely
irrelevant.

With estimates of the distribution of L1 in hand I can return to equation 2 and empirically
calculate the § implied by r. I calculate 8 using a no-smoothing benchmark, that is, calculating
the demand for consumption smoothing from the initial condition of C; = L, that is, hand-to-
mouth consumption. Using the life-cycle model’s numerical estimates of E[L; 1] and o7,” I
can calculate the upper bound of B; (equivalently, the lower bound of impatience) B;5,; for

each observation in the SCF. I use a reasonable relative risk aversion parameter of 1.9 from

5To be conservative, i.e. avoid estimating a f further from 1 than reality, and to avoid making a strong
assumption about risk preferences, I use 07, = 0 as the base case in this estimation.
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Laibson et al. (2024).

Figure 9: Implied Distribution of Upper-Bounds on Impatience s
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Notes: Implied upper-bound Bs are calculated using Equation 5 using y = 1.9

Figure 9 shows the distribution of implied upper bound s, equivalently described as
lower bounds of impatience. Interestingly, 20% of households borrow at lower interest rates
than their implied consumption-smoothing demand would suggest, suggesting according
to this procedure that they have negative rates of time preference. While this may seem
counterintuitive, consider that Epstein and Zin’s first attempt to fit their model to asset market
data (Epstein and Zin (1991)) resulted in them estimating negative rates of time preference,
and that the marginal investor in asset markets is likely drawn from the most patient segment
of the distribution. The median implied upper bound B is 91%, indicating at least 9% annual
discounting of utility. 2% of people have implied Bs below 75%, indicating that they discount

utility by at least 25% per year. In the next Section, I describe and give the results of a
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procedure with more extensive data and identification requirements that gives point estimates

instead of upper bounds.

4 Point Estimates: A Sufficient Statistics Approach Using
Default Decisions

In this section, I ask what we can learn about households” impatience from debt repayment
decisions, rather than debt transaction decisions which, as discussed in Section 3, can only
hope to provide a lower bound to impatience even in the best possible world. I show how in a
simple endogenous default model with separable utility, the causal effect on default decisions
of identified shocks to repayment obligations at two different time horizons is sufficient to
point-identify the subjective rate of time preference () between those two different points
in time. The economic intuition of this approach is that if borrowers are very impatient,
they will be very sensitive to short-run changes in their payment schedule; conversely, a
patient borrower will strategically default only when there are long-term benefits from doing
so. While interest rates provide valuable lower bounds, they do not point identify forward-
looking discount factors. For this, we must turn to settings in which borrowers’ repayment
obligations are experimentally or quasi-experimentally manipulated. In such environments,
repayment or default responses to changes in short- and long-term payments reveal the
relative weight households place on the near versus distant future.

This section develops a unified sufficient-statistics framework that interprets such re-
payment sensitivities as direct evidence of impatience. The intuition is simple. Suppose a
borrower faces a repayment obligation m in the first period and (L — m) in the second period
of a two-period debt contract. If we perturb m or L slightly—for instance, through policy
interventions that shift borrowers’ repayment schedules—the borrower’s default decision
may change. The magnitudes of these changes encode the tradeoff the borrower makes

between immediate consumption relief and future repayment relief governed by the discount
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factor.

This model has several powerful advantages. For one, it delivers point estimates instead
of lower bound. Unlike laboratory experiments, it utilizes revealed preference with real stakes
and realistically common time horizons. Unlike approaches based on asset market data, it
can be calculated for the majority of U.S. households who do not meaningfully participate
in financial markets. It explicitly accounts for the endogeneity of household default and its
timing, and indeed uses that information to obtain the estimate. It requires no functional
form assumption for the utility function, only requiring that it be increasing, concave, and
time-separable.® This model is particularly powerful in its ability to relate the discount rate to
readily-measurable moments which are indeed measured in existing papers in the literature.
So far I have identified two suitable papers which measure and report the required estimates
with valid causal identification strategies: Dobbie and Song (2020) and Ganong and Noel
(2020).

Dobbie and Song (2020) use an explicit randomized controlled trial which varies short-term
and long-term payments due on individuals’ modified credit card repayment plans. Ganong
and Noel (2020) utilize a sharp regression discontinuity design in the HAMP mortgage
modification program which affected mortgage repayments due at different time horizons.
I interpret their results through the lens of this unifying model. The model compares the
effect of shocks to repayment obligations at two different time periods to impute an implied
forward rate between those two time periods. I show that the empirical size of these two
effects are sufficient statistics for the implied forward rate between those two time periods.
Standard errors are also easily calculated with the delta method.

This method can be used to calculate implied time preferences for any paper which reports
the effect on repayment of two or more shocks to payments owed at two or more time
horizons and does not require the full data. It also accommodates any increasing concave

utility function, not requiring any functional form such as CRRA or EZKP utility as I assume

6 discuss extensions to non-time-separable utility functions in Section 6.1. The assumption of time-separability
is not restrictive, but additional assumptions are needed wheen the intertemporal elasticity of substitution is
divorced from risk-aversion.
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in Sections 3 and 6.1.

4.1 Two-Period Endogenous Default Model

The basis of the model is a 2-period endogenous default model which features the same basic
trade-off as Indarte and Kanz (2023). The household weighs penalty of default (legal, social,
or dynamic) against the value of extra consumption from foregoing debt payments. The
model is set in 2 discrete time periods t € {1,2}, which represent the two dates at which
payments are due that can be potentially modified. The starting balance of the loanatt =1
is defined as L, and the individual payment size, assumed to be constant, is denoted m (for
“monthly payment”). The second period payment is therefore L — m in the two-period case.
In this base case, L = 2m (constant monthly payments).

I assume only one dimension of uncertainty to make the model tractable: period 1 income
is uncertain and is distributed y; > 0 ~ F(y1). Note that no specific assumption on the
income process is necessary, other than that it is sufficiently uncertain to generate default:
if income is too low, the marginal utility is high, and eventually exceeds the punishment
of default. The punishment for default is equal to ¢, as in Indarte and Kanz (2023). This
is a comprehensive sum of all punishments that befall a borrower who defaults: dynamic
exclusion from the credit market, social stigma, and attempts by the lender to garnish wages.

The borrower has a strictly increasing and strictly concave utility function over consump-

tion, additive across period with a time discount factor of 8

vy =u(G)
P P 2N " ©)
W =u(C) + | [ VIAE ) + | VEdFaln)
2
Vi = u(Cy) + g1y’

Where y; is defined implicitly by the borrower’s endogenous default threshold in period
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2. The budget constraints are:

Cl =y1—m
CY =

(7)
Cy =y2— (L—m)

CY =1

Here P and N denote payment and non-payment, respectively. The borrower defaults if
the utility gain from avoiding payment exceeds the punishment ¢, which summarizes legal,
social, and dynamic consequences of default.”

Let y; be the income threshold at which the borrower is indifferent in period 2:

u(Cy (y3)) = u(Cy' (y3)) — 0. (8)

Similarly, the borrower defaults in period 1 if the value of non-payment today plus the
continuation value of facing the threshold y3 tomorrow exceeds the value of payment today

plus discounted continuation value. The probability of default in period 1 is therefore
p=hy)
where y] is determined implicitly by
u(Cr™) + BE[V;] = u(C™) + BE[V,']. ©)

Equations (8) and (9) jointly determine default behavior. I do not need closed-form
solutions for yj or y; to study comparative statics. Instead, I focus on how small changes in m

and L perturb p; and thereby reveal the discount factor f.

7 This formulation follows a large literature modeling default as the result of a discrete comparison between
current utility gains and continuation-value losses from dynamic exclusion.

27



4.2 Default Sensitivities as Sufficient Statistics

Differentiating p; = F(y;) with respect to m and L yields:

3 =W s = f) o
Under the envelope condition for the default threshold in period 1, the comparative
statics of y7 follow from differentiating (9). Straightforward algebra (with full derivation in

Appendix A) yields the two key sensitivities:

E [1'(C5 (y2)) | y2 > y3]
w' (Cf*) —w'(CY*) 7
*) u’(Cf) . aPl
Y1 u/(cf*) _ M’(C{\I*) oL’

WL F(y1) B1 — p2)

(10)

op1 _
== fl

These expressions capture the essence of the identification strategy. A marginal increase in
m reduces C?, thereby increasing current marginal utility. A marginal increase in L increases
the future payment burden and thus reduces the continuation value for borrowers who
expect to repay in period 2. The ratio of these two effects reveals the intertemporal preference
parameter that equates marginal utilities of consumption across periods.

These comparative statics can be measured empirically and mapped to the primitives
of the model. In particular, I can isolate the discount rate g by rearranging the previous
equations as such:

in E [ (c3) lv2 > 3]

8p1 :ﬁ

(1—p2) 2+ % u' (c1)

This simplifies extremely elegantly for the simplifying case of y, = y; (or, more generally,
E[u'(y2 — m)|y2 > y3] = u'(y1 — m)), that is, the case where expected marginal utility tomor-
row is exactly the same as marginal utility today. This implies no late default (p, = 0), which

is not only an extremely convenient assumption but very nearly empirically true, as shown in
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Appendix E. It also implies that short-term expectations of income growth are close to zero,

which is also empirically consistent with the data in Section 3. This simplification implies

that:
[ (e8) bz > va] = ()
1( P *
This can easily be adjusted by putting bounds on %, for example using the
1

life-cycle model in Section 3. Quantitatively, expectations of income growth are not high
over the length of auto loans (approximately 5 years) either with rational expectations or in
perceptions. The result of the most simple assumption (that the period one income shock is

the only source of uncertainty), is that I obtain the surprisingly simple expression:

Ip1

AL
aﬂ+9ﬂ5

om oL

(11)

This maps neatly to intuition: if default decisions are entirely forward-looking and strate-
gic, with borrowers who are not liquidity constrained and do not value present and future
consumption differently, then the observed sensitivity of default will be purely a function
of the total loan balance and the sufficient statistic formula will evaluate to f = 1: perfect
patience. On the other extreme, if default decisions are entirely myopic and borrowers do
not consider the future whatsoever, the default decision is purely a function of the monthly
payment and the sufficient statistic formula will valuate to B = 0: perfect myopia. The
formula smoothly nests all intermediate cases, where borrowers put some weight on current
conditions and some weight on future conditions — the intermediate point is their discount
rate.

The assumption of no default in period 2 is palatable in large part for empirical, not
only theoretical reasons: late default, especially on auto loans, is extremely rare. Section E
shows these calculations. Not only are defaults extremely rare in the late months of auto
loan contracts, but they are rare conditionally on narrow credit score categories and attrition.

One might worry that the default rate as a function of time outstanding on the loan might
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slope downwards for spurious reasons, including the elimination of high default risks from
the population early. The calculations in the appendix show that this is not the case: even
conditioning on narrow credit score groups and adjusting for attrition to calculate true

conditional default rates, very few borrowers default late in the life of the contract.

4.3 Recovering the Annual Discount Factor

The model is set in two periods, and the formula produces the revealed-preference discount
rate between those two periods. If the term structure slopes down (for example, if it is
hyperbolic as in Laibson et al. (2024)), then this multi-period discount rate, a single number, is
not sufficient to identify the entire term structure. To proceed, I proceed under the assumption
of constant and time-consistent discount rates, and transform this from a cumulative rate over

a variable time period into an annual discount rate, I adjust it as:

__ pl/T
ﬁannual - ﬁcumulutive (12)

Where T is calculated as the time between average default and average loan maturity.?
This definition of T is chosen to best represent the economic tradeoff that the borrower makes,
weighing in their decision both current consumption at the time at which the default decision
is made and marginal future consumption at the loan end date affected by variation in the
total loan balance.

I calculate standard errors using the delta method, incorporating sampling-based uncer-
tainty in my estimates of both comparative statics and T. The estimand is B, muiative, Which I

hereafter call simply f:

Ip1 /T
_ JL

om

In Appendix F, I provide the full delta method calculations.

8 In the auto loan sample (introduced later in Section 4.5) this is 3.2 years unconditionally.
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4.4 Application in Experimental and Quasi-Experimental Settings

Armed with the sufficient-statistics formula (13), we can reinterpret results from quasi-
experimental studies through the lens of time preferences. Two prominent settings allow direct
computation of A and B: ?, who study credit card borrowers, and ?, who study mortgage
borrowers.

At first glance, these studies report seemingly contradictory findings. Dobbie and Song
estimate that reducing short-term payments has almost no effect on default probability, while
long-term payment reductions matter substantially. Ganong and Noel report almost the
opposite: short-term payment relief affects repayment behavior far more than long-term
mortgage forgiveness. Using their point estimates, however, and controlling for the vastly
different time horizons between the respective shocks, both studies imply surprisingly similar
discount factors.

Let Tps and Tgn denote the effective horizons in each study. Using the reported compara-

tive statics:

Bcen = 0.76  per year,

Bps = 0.58 per year.

Despite surface-level differences, both populations appear highly impatient. Credit card
borrowers are even more impatient, consistent with intuition: such borrowers tend to be
liquidity constrained, have limited access to low-cost credit, and may face greater income
volatility.

These findings demonstrate the power of the sufficient-statistics approach. Without
needing full structural models or microdata, and without imposing parametric assumptions
on income dynamics or utility curvature, we can infer long-run forward discount factors for
heterogeneous populations.

In Section 4.5, I apply this approach to auto loan data, where differences in maturity

and payment amounts across borrowers provide the variation required to estimate A and B
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directly.

4.5 Application to Auto Loan Data

Auto loans offer an attractive empirical environment for applying the sufficient-statistics
method. Maturities vary substantially across borrowers, even conditional on credit score,
and contractual payments are highly salient. Moreover, auto loans constitute one of the most
common forms of installment credit in the United States, with wide participation across the
income distribution. For many households—especially those with limited liquid wealth—auto
loans represent the primary medium through which repayment and default decisions reveal
intertemporal tradeoffs. I use a 1% random sample of U.S. credit reports obtained through
a partnership with one of the nation’s leading credit bureaus. The sample includes over six
million auto loans originated across the past decade. Table 5 summarizes the key variables:

loan amounts, balances, monthly payments, maturities, credit scores, ages, and imputed

incomes.
Table 5: Summary of Auto Loan Sample
Variable Non-null Obs. Mean Median 25th Pctl 75th Pctl
Loan Amount 6313128 22800.77 20000 13209 29122
Loan Balance 6404640 20440.13 17500 9877 27216
Monthly Payment 6197142  2241.88 395 292 533
Maturity (Months) 6408812 60.24 61 48 72
Credit Score 6408812 771.76 700 623 774
Age 6392929 45.48 45 33 56
Estimated Income /Mo 6316100 3885.30 3417 2500 4667

The repayment horizon is typically five years (60 months), and the three most popular
maturities of 36, 60, and 72 months account for over half of observations. Figure 10 shows

origination volumes by year, indicating steady and large coverage of this data since 2010.
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Figure 10: Auto Loan Originations Over Time
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Number of auto loans originated in the 1% credit bureau sample, plotted by origination year.

To identify the comparative statics dp;/dm and dp;/dL, I leverage heterogeneity in con-
tractual maturity across borrowers with the same credit score. A key identifying assumption,

necessary to proceed, is the following exclusion restriction:

Conditional on credit score, maturity and loan size are as-if randomly assigned with respect to
pre-existing determinants of default.

This assumption is plausible given lenders’ reliance on standardized underwriting algo-
rithms that map credit scores to allowable loan structures. While more creditworthy borrowers
may indeed receive different contract terms, these differences are mediated almost entirely by
credit score, which is observed. Conditional on score, residual sorting across maturities must
be ruled out.

Under this assumption, variation in m and L across similar-score borrowers yields quasi-
experimental shifts in repayment burdens. Because households with different maturities

but identical credit scores face similar income risk, any systematic difference in default
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hazard can be attributed to the intertemporal allocation of payments rather than underlying
heterogeneity.

The assumption is essentially an exclusion restriction that pre-existing creditworthiness
only affects maturity and loan size through observable credit score. That is, maturity and

loan size are as-if randomly assigned conditional on credit score: while better borrowers may

systematically acquire different loan terms (which is certainly the case), the credit score is an
accurate summary statistic for the borrower’s creditworthiness as it is used to define the loan
terms. This is a good assumption because lenders typically use standardized underwriting
technologies to decide loan terms based on verifiable information (See, e.g., Yannelis and
Zhang (2023)), although this cannot itself be observed in the data per se. The result of
this assumption is that conditioning on credit score, the only remaining unknown factor
which decides whether the individual will default on their loan is the income shock that
they experience after taking out the loan, which lenders and borrowers are no more able to
predict than the bank. I document the extent to which both monthly payment size and total
loan size are correlated with default rate conditional on narrow credit score categories and
zip-by-month fixed effects. In principle, this correlation may be driven by adverse selection
or moral hazard: the estimation in this section is exactly correct in the limiting case where
the correlation is entirely due to the moral hazard (that is, larger loans cause borrowers to be
more willing to decide to default) that I model, and not at all due to adverse selection (worse
borrowers take larger loans). The model explicitly calculates the discount rate under this
assumption of moral hazard, precluding the possibility of adverse selection. This is arguably
a strong assumption, as it precludes the possibility of privately-known information by the
borrower or lender that would result in larger or longer loans being systematically assigned
to borrowers whose true creditworthiness is better than their credit score suggests. I argue
that despite this potential defect, this assumption is the most palatable one consistent with
being able to estimate the model consistently and robustly across time, geography, and credit
score categories. To bolster the plausibility of this assumption I show that the unconditional

default rate as a function of maturity of auto loan contracts varies substantially but not in any
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systematic way. Lenders and borrowers must come to a joint agreement on the size of the
loan and the maturity of the loan as a function of the credit score — this endogenous process
removes the average unconditional correlation between default rate and default probability
while still leaving room for idiosyncratic factors to shift the loan size and maturity (in a
mean-zero way), creating an ex-post correlation between payment size/loan size and default
rate. The assumption is also bolstered by a simple, directional incentives argument: if lenders
could privately observe worse (better) credit risks conditional on credit score, they would
want to give those borrowers smaller (larger) loans, which is the opposite of what I observe in
the data.

The difficulty of separately identifying adverse selection from moral hazard has been
recognized widely in the literature at least since Ciappori and Salanie (2000), and the gold
standard approach (Karlan and Zinman (2009) requires experimental variation which is
infeasible to collect at scale in the U.S. population. Even if the Karlan and Zinman test could
be performed on a representative sample of US borrowers, it would still be insufficient to
identify adverse selection at the market outcome level — this test still only identifies the
narrow adverse selection present in a single instance of the takeup decision of a single loan.

In the absence of such experimental data and faced with this identification problem, I find

the assumption of no adverse selection conditional on credit score to be the most palatable
assumption possible in this setting to answer the question at hand, which is the change in
default rate caused by higher loan balances and higher monthly payment. I am encouraged in
believing that the remaining variation in monthly payment and total balance, after controlling
for credit score and zipcode-by-month fixed effects, is likely to be purely idiosyncratic by
Figure 11, which shows a highly idiosyncratic relationship between unconditional default
rate and loan terms. I therefore proceed under the necessary assumption that lenders set
loan terms in such a way as to remove the correlation between loan term and default rate
by, for example, higher downpayments for less creditworthy customers, and that differences
in contract monthly payment and origination balance which are not explained by narrow

credit score fixed effects are responsible for changes in default rate that are not explained by
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Figure 11: Idiosyncratic Unconditional Relationship Between Maturity and Default
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a pre-existing and unobservable correlation between creditworthiness and contract terms.
Furthermore, even if there does exist adverse selection in the direction consistent with the
results in Table 6, if the degree of adverse selection is equal at all maturities it will cancel
out due to the division operation in Equation 11. Therefore what is needed to violate this
exclusion restriction and bias the estimates is maturity-varying adverse selection in the
opposite direction predicted by lender incentives.

Table 6 reports estimates from two separate logit probability models in which the depen-
dent variable is an indicator for default. Each specification includes an identical set of fixed
effects—score-ventile fixed effects and zipcode-by—month fixed effects—which flexibly absorb
borrower risk classification and local economic conditions at the time of loan origination.

The first regression estimates the sensitivity of default to the short-term required payment

burden. Specifically, I estimate

Default; = Bs log(MonthlyPayment;) + 7, + (i) ¢(i) T €i/ (14)
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where 1, (;) denotes score-ventile fixed effects and 4, ;) +(;) denotes zipcode-month fixed
effects. The coefficient B measures the percentage-change sensitivity of default with respect
to the current monthly payment obligation. The estimate of fs = 0.50 (s.e. 0.0083) indicates
a strong and precisely estimated association: borrowers facing higher required monthly
payments are substantially more likely to default, holding constant long-term obligations and
all fixed effects.

The second regression instead focuses on the long-term debt burden by replacing monthly

payments with the logarithm of total payments owed over the life of the loan:

Default; = B, log(TotalPayments;) + ;i) + 6. (i) + &i- (15)

Here B captures the sensitivity of default to the overall, long-horizon repayment obliga-
tion independent of the short-term payment schedule. The estimate S = 0.4283 (s.e. 0.0058)
likewise shows a strong positive association: larger total repayment obligations are linked to
a higher probability of default.

Across both specifications, the inclusion of rich fixed effects ensures that identification
comes from within—zipcode-month and within—score-ventile variation in payment obligations.
The results highlight that default risk is highly responsive to both short-term liquidity pressure
(monthly payment) and long-term financial burden (total payments). The somewhat larger
short-run coefficient suggests that the immediate payment obligation exerts a slightly stronger
effect on default behavior than the overall debt load, though both channels are quantitatively

important.
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Table 6: Estimates of Default Sensitivity to Short and Long-Term Payment Obligations

Dependent Variable: Default
Model: (1) (2)
Variables
log(Monthly Payment)  0.5000***

(0.0083)
log(Total Payments) 0.4283***

(0.0058)

Fixed-effects
Score Ventile Yes Yes
Zip Code x Month Yes Yes
Fit statistics
Observations 1,434,210 1,434,208
Squared Correlation 0.37087 0.37278
Pseudo R? 0.37593 0.37766
BIC 3,423,797.9 3,421,505.8

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Here, I report the results of the sufficient statistics exercise deployed over the entire auto
loan dataset, whereby I use the multiple regression analysis described above to estimate

Equation 11 with standard errors as described in Appendix F:

Table 7: Estimates and Standard Errors of 8

Variable Estimate Std. Error Variable Description

op1

5 0.500 0.008 Default sensitivity to monthly pay-
m ment
d
% 0.428 0.006 Default sensitivity to total payments
T 3.223 0.004 Average term (in years) between de-
fault and loan end date
B 0.787 0.003 Derived annualized discount rate pa-
Ip1 A
B= -9
rameter: p = (% N aﬂ)
dL am
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4.6 Heterogeneity

5 Heterogeneity in Estimated Discount Factors

The preceding section establishes that, on average, auto loan borrowers exhibit steep impa-
tience. But the distribution of B is highly heterogeneous. Understanding this heterogeneity is
crucial: it informs which households are most sensitive to liquidity shocks, which are most in
need of consumption smoothing, and how credit policies redistribute welfare across different
types.In this section, I use variation across income, credit score, and geography to construct
conditional distributions of discount factors. This approach yields a granular mapping from
borrower characteristics to impatience that is both intuitive and empirically rich.

This section presents heterogeneity analyses of the estimated discount factor 8 across (i)
credit score ventiles, (ii) income ventiles, and (iii) U.S. states. For each subgroup, the following

procedure is applied independently:
= Define a partition of the data (score ventile, income ventile, or state).
= Within each partition, recompute score ventiles to preserve fixed-effects structure.

= Estimate two logistic fixed-effects models of default: one on log(scheduled payment)

and one on log(total payments).

= Compute the derivative sensitivities of default with respect to payment size and loan

length.
= Estimate the average time to default and the implied intertemporal horizon AT.
= Obtain 8 and its delta-method standard error.
= Plot the results with point estimates and +2 standard-error bands.

Figure 12 shows heterogeneity by credit score ventile, Figure 13 shows heterogeneity by
income ventile, and Figure 14 shows heterogeneity across states. The full set of state-level

estimates is reported in Table 8.
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Figure 12: Estimated Discount Factor B by Credit Score Ventile. Error bars show +2 standard
errors.
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Figure 13: Estimated Discount Factor p by Income Ventile. Error bars show 12 standard
errors.
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Figure 14: Estimated Discount Factor B by State (Sorted by Point Estimate)

State—Level Estimates

0.90

o
@
a

o
=
S

b e it

Beta (+2 SE)
=
o

e
3
=]

o
o
a

0.60

41



Table 8: State-Level Discount Factor Estimates

State  Beta SE N
MN 0.6912 0.1188 106299
OR 0.7187 0.0289 76697
WA 0.7188 0.0346 128864
IA 0.7649 0.0241 72523
SC 0.7661 0.0158 103495
NE 07662 0.0406 39562
CA 07673 0.0119 623313
IN 0.7702 0.0131 139600
AK 0.7725 0.0398 12478
MO 0.7728 0.0185 127183
WI 0.7728 0.0245 107439
AZ  0.7743 0.0166 130653
HI 0.7776  0.0760 20135
OH 0.7787 0.0151 237281
ID 0.7790 0.0370 36909
CO 07799 0.0221 107594
uT 0.7808 0.0229 70515
KY 0.7825 0.0188 83162
NC 0.7844 0.0095 214638
VA 0.7855 0.0167 164137
KS 0.7855 0.0308 57470
PA 0.7874 0.0192 250457
IL 0.7914 0.0136 221882
CT 0.7935 0.0424 58263
AL 0.7960 0.0206 106409
WY 0.7964 0.0552 13067

State  Beta SE N
NV  0.7968 0.0241 56195
NJ 0.7980 0.0210 160247
MS  0.8023 0.0205 58887
FL 0.8029 0.0080 454937
TN  0.8063 0.0148 137186
MD 0.8073 0.0191 117419
PR 0.8082 0.1184 41139
RI 0.8103 0.1650 16993
GA 0.8105 0.0101 203167
MI 0.8193 0.0133 205098
ND 0.8208 0.1331 17054
NM 0.8209 0.0340 42475
VT 0.8224 0.4009 16030
NY 0.8227 0.0134 306696
OK 0.8246 0.0157 84997
AR  0.8256 0.0241 63014
MA 0.8293 0.0296 107804
LA 0.8306 0.0190 89300
NH 0.8344 0.0249 34025
X 0.8363 0.0073 605128
WV  0.8381 0.0602 41744
SD 0.8436 0.0491 20326
DE 0.8602 0.0798 18860
MT 0.8740 0.0781 20799
ME 1.1407 0.4449 31992

In the upper score ventiles, the B estimates exhibit extremely wide error bands. This is
mechanically driven by the fact that high-score borrowers rarely default in the sample. With
so few observed defaults, the estimated sensitivity of default risk to payment size becomes
highly uncertain, which translates directly into imprecise 8 estimates. This is not so bad of a
defect, however, considering that for very safe credit risks, this sufficient statistics method is
not actually necessary: without default, credit is not rationed, and the marginal interest rate
that such individuals borrow or save at is able to reveal their discount rates.

The heterogeneity patterns reveal several noteworthy findings. Firstly, the slope of

across credit scores is relatively flat. Despite the large variation in default rates across scores,
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the estimated discount factor shows almost no systematic slope with respect to credit score.
This suggests that the well-established empirical fact that low-score individuals default more
frequently cannot be attributed to greater impatience. Instead, other forces—such as higher
volatility in income, lower financial buffers, or lower perceived penalties of default—must
account for the strong relationship between score and default risk. Impatience does not appear
to be the primary mechanism.

Secondly, the slope of  across income ventiles is very sharp. Lower-income borrowers are
estimated to have meaningfully lower 8, consistent with substantially higher impatience (or
higher effective discount rates). This upward gradient in f is statistically significant — I can,
for example, reject the null that the first and third ventiles have the same discount rate.
Overall, the results imply that differences in default rates across credit scores do not reflect
systematic differences in time preference, but that differences across income levels do reflect
economically meaningful variation in discount factors. Low-income individuals discount the
future more heavily, consistent with tighter liquidity, higher risk exposure, or higher marginal
utility of present consumption.

These findings have implications for credit modeling, welfare analysis, and the design
of repayment contracts. In particular, they suggest that variation in impatience is correlated
more strongly with income—a measure of economic constraint—than with credit score, which
more directly reflects historical credit behavior but is not found using this methodology to be

correlated with impatience.

6 Extensions

6.1 Non-Time-Separable Utility

The baseline model analyzed in Section 4 assumed that utility is time-separable with iden-
tical utility functions in each period. However, numerous failures of time-separable utility

functions in explaining asset pricing phenomena have led to the use of more sophisticated

43



models where utility is not time separable, the most popular of which is the Epstein-Zin-
Kreps-Porteus (“EZKP” hereafter) utility function (Kreps and Porteus (1978), Epstein and Zin
(1991)).

The EZKP utility function is given by

1

}w (16)

==

1—
1—

o)

u = {1-p)c, 7+ p(BUL)

Notationally, 6 is also used to denote 11_;1 (Campbell (2018), Epstein and Zin (1991)).’
v
In a representative-agent economy characterized by such preferences, as well as ho-
moskedastic and jointly lognormal asset returns and consumption growth (assumptions I

make hereafter in this section), the risk-free short rate is

0 6—1
2¢20§+ > o2

1
i1 = —log B+ @Et [logci11 — logct] —

Where 07 is the variance of the innovation in log consumption and ¢?2 is the innovation
in the log return on wealth (Campbell (2018)). Adapting Equation 5 to separate IES and risk
aversion requires only a few edits to this equation. For one, the “Steinbeck Critique” term
(Et[Ls4+1] — L¢) is now scaled by 1/ instead of v, and secondarily, an additional term appears

to account for the additional impact of future uncertainty:

B = exp —(r— %(Et[LtH] “ L)+ 2%;2@) (17)

This equation can be taken to the data in analogous fashion to the exercise in Section 3.

7 Conclusion

For such a fundamental object in the study of finance as the time value of money, existing

approaches to measuring it and its distribution in large populations overwhelmingly rely

? Interestingly, when Epstein and Zin first calibrated this model using GMM, they consistently obtained negative
estimates of time preference (f > 1) and expressed their puzzlement at this finding (Epstein and Zin (1991)).
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on market prices of instruments traded almost entirely by the richest people in the world.
This paper develops new empirical methods for measuring household time preferences in
environments where traditional asset-market approaches fail. Because most households do
not meaningfully participate in the market for risk-free or even risky financial assets, the prices
of publicly traded instruments reveal almost nothing about the intertemporal preferences of
the median or modal American household. Instead, the relevant revealed-preference margin
for the vast majority of citizens lies on the liability side of their balance sheets. Credit, not
investment, is the primary domain in which households express their intertemporal tradeoffs.

The central contribution of this paper is to articulate and implement two complementary
identification strategies that leverage this fact. The first strategy uses the interest rates
households are willing to pay as lower bounds on their subjective discount rates. Because credit
products are discrete and rationed, observed borrowing rates lie weakly below individuals’
true marginal rates of intertemporal substitution. The second strategy uses the sensitivity
of default to short- vs. long-run changes in repayment obligations to point-identify the discount
factor. In an endogenous-default model with concave and time-separable utility, the ratio of
these repayment sensitivities is a sufficient statistic for the discount rate. The sign, magnitude,
and interpretation of these sensitivities are transparent, robust, and directly connected to
empirical moments measured in existing quasi-experimental and experimental studies.

Across both approaches, I find that most households are substantially more impatient
than is typically assumed in macroeconomic, household finance, and public finance applica-
tions. The median household discounts future utility at rates far exceeding those implied by
Treasury yields or representative-agent calibrations. Even after adjusting for consumption-
smoothing motives using a state-of-the-art income process, impatience remains large. These
findings support the view that a significant share of intertemporal credit demand reflects true
impatience rather than expectations of rising future income or volatility-driven smoothing
motives.

A second major finding concerns the distribution of time preferences. The heterogeneity

analysis reveals two sharp patterns. First, impatience rises steeply as income falls: low-income
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households value current consumption far more heavily relative to the future. Second, impa-
tience is nearly orthogonal to credit score, once one conditions on income. This distinction is
conceptually important. Credit scores predict default risk, but default risk is not the same as
impatience — indeed, the results here suggests that they are not even correlated in the popu-
lation. This iimplies that the link between credit score and default emerges largely through
other factors which may include income volatility, lack of access to savings technologies, lack
of financial education, or differing nonpecuniary costs of default — not through differences
in discount factors. These results suggest that many models and policy narratives which at-
tribute high default rates among low-score borrowers to high impatience may be misspecified.
The data support a more nuanced decomposition: low income predicts impatience whereas
low score predicts risk.

The implications of these findings are wide-ranging. First, the results have strong implica-
tions for public finance. The United States federal government, following OMB guidelines,
applies a social discount rate near 2-3 percent. But if a large share of the population has
discount factors near 0.8 or below at annual frequency, then policies involving intertemporal
redistribution—from the present to the future, or vice versa—have sharply different welfare
implications depending on whose preferences are considered normative. For example, as Hen-
dren and Sprung-Keyser (2020) emphasize, the relative value of early-childhood versus adult
human-capital policies depends critically on the chosen discount rate. If actual household
discounting is far higher than official rates, then policies delivering longer-run payoffs may
appear more attractive to planners than they do to the citizens they aim to serve. This raises
normative questions about paternalism, welfare weights, and the appropriate aggregation of
heterogeneous time preferences.

Second, the results speak directly to the design of consumer credit markets. If a substantial
share of households discounts the future extremely heavily, then long-dated repayment relief
(e.g., mortgage principal reduction, long-horizon loan extensions) may have limited effects
on default behavior, whereas short-term payment relief may have large effects. The con-

trast between the credit-card and mortgage modification results—once adjusted for horizon
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lengths—supports this view. This has operational consequences for delinquency manage-
ment, loss mitigation, and the structuring of hardship programs. Understanding impatience
is essential for designing contracts that support sustainable repayment among financially
constrained borrowers.

Third, the findings speak to broader questions in macroeconomics and political economy.
If the representative citizen is much more impatient than the representative investor, then
political pressure to favor present consumption over future investment—including impatience
for taxation, infrastructure maintenance, climate mitigation, or public debt reduction—may
not be a puzzle at all. Rather, such preferences may reflect the intertemporal tastes of the
median voter. The divergence between asset-market discount rates (revealed by patient
wealthy investors) and population discount rates (revealed in repayment behavior) has deep
implications for how economists interpret intertemporal policy choices in democratic societies.

Fourth, the analysis informs ethical debates about intergenerational equity and the ap-
praisal of long-run public projects. Climate policy, infrastructure renewal, and investments in
basic research involve tradeoffs spanning decades. If policymakers adopt social discount rates
tar below the revealed-preference rates of the median household, they face a philosophical
tension: which preferences—those of patient asset holders or those of impatient borrow-
ers—should guide social decision-making? This issue is inherently normative, but empirical
measurement of heterogeneity in impatience, as provided here, is essential for grounding
such normative debates in the lived behavior of actual households.

Finally, the analysis suggests several fruitful directions for future research. One avenue is
to combine the sufficient-statistics approach with structural heterogeneity models to jointly
estimate discount factors, risk preferences, and expectations. Another is to investigate the
intergenerational transmission of impatience, including whether discount rates correlate with
family background, financial education, or exposure to financial shocks. A third is to embed
the repayment-based discount-rate estimates into heterogeneous-agent macroeconomic mod-
els with borrowing constraints, to study how impatience shapes macroeconomic volatility,

savings behavior, and the propagation of business cycles. A final and particularly intriguing
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direction is to explore normative frameworks that incorporate heterogeneous time preferences
more explicitly, acknowledging that societies may face genuine heterogeneity in how citizens
value the future.

In summary, I find that the majority of households are significantly more impatient than
would be suggested by treasury rates. Adjusting for consumption-smoothing demand does
very little to change this, as most households in surveys are actually quite pessimistic about
short- to medium-term income growth. This implies that we should take seriously the
ramifications, for political and economic behavior, of the fact that the vast majority of U.S.
citizens are far more impatient than the marginal asset market investor. It also implies that
when designing asset pricing models to make inferences about the macroeconomy based
on asset market data, we should be careful to remember that the marginal investor in these
markets is not nearly representative of the U.S. population on an equal-weighted basis. In
sum, the evidence in this paper suggests that the time preferences of the median American
household differ sharply from those inferred from asset markets, and that impatience plays a
first-order role in household financial decisions. Recognizing and appropriately modeling this
impatience is crucial for positive and normative research across macroeconomics, household
finance, public finance, and political economy. By developing tools to measure discount
factors outside asset markets, and by applying them at scale, this paper aims to provide a
foundation for a more empirically grounded understanding of intertemporal preferences in

the broader population.
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Appendices

A Proofs

This appendix provides a complete derivation of the comparative statics that characterize
how the first-period default probability responds to changes in (i) the total loan balance L and
(i) the periodic payment m. These results are stated in equation (10) in the main text. Here, I
derive them in full, beginning from the definition of the optimal default threshold.

A.1 Setup and Default Threshold

The borrower chooses whether to default in period ¢t = 1 by comparing:

VP n) =l =)+ | [ty = (L= )G )+ [ (ut0m) = 0D | )

and
VI (1) = u(yr) + Bu(y2) — o).
The period-1 default threshold y7 satisfies:
Vi (yi) = V¥ (v0): (18)

Differentiating this identity with respect to a contract parameter (either L or m) yields the
sensitivity of y], and therefore of the default probability

p1 = F(y1).

Because p; = F(y;), I have:

g = f(yl) ox , X € {L,m} (19)

Thus, the core task is to compute dy; /ox.

A.2 Differentiating the Threshold Condition

Rewrite (18) as:
A(yiLom) =V (1) = Vi (1) =
aty; = yq.
Implicit differentiation gives:
Y] _ oA /odx
ox  OA/dy;’

I compute each term in turn.
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A.3 Derivative with Respect to 1,
Because CI' = y; —m, CN = y;, and future values do not depend on 1, I have:

0
a1
Evaluated at the threshold:

A(yy; Lym) = u'(y; —m) —u'(y1) = u'(C) — o/ (CY).

OA/dyy = u' (CP*) — o/ (CN).

Because u is concave, the denominator is negative, as expected.

A.4 Derivative with Respect to L

Only the continuation value depends on L. Differentiating the present-value expression:

P
T =B (u = (L) dFa | )

There is no dependence on L in VlN , SO:

= ﬁ/ (G5 (2 )) dF(y2 | y1)-

Pulling out the conditional expectation:

g_ﬁ = —B(1— pz)E[u'(Cg(yz)) ‘yZ > yﬂ ’

where py = F(y3) is the second-period default probability.
Plugging into (A.2) and then into (19) yields:

M1 _ E[u'(C5(y2)) | v2 > 3]
a_Ll = f(y])B(1 - p2) u/(c%*)z— u’(é{\]*) =

This is the first line of equation (10).

A.5 Derivative with Respect to m

The payment m affects both current consumption and the future balance term L — m.
Compute each contribution:

(i) Direct effect on CI:
5 -u(Cp) = —u'(CY).
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(ii) Effect on continuation value through (L — m):

d

= u(y2 = (L—m)) = +u'(C (2))-

Thus: A
o= —u'(C7) + B(1 = p)E[' (G (v2)) | y2 > y3]-

Observe that the second term is exactly the negative of the expression for dA/dL:

oA, _p, OA
% = —Uu (Cl) — i
Plugging into (A.2) and (19) yields:
% — f(y*) M/(Cf) _ apl
om 1 u/(cf*) _ u/(ci\]*) oL~

This is the second line of equation (10).

A.6 Discussion

The structure of these expressions highlights the intuition: increasing L worsens future
consumption while holding current consumption fixed; increasing m worsens current con-
sumption while reducing future obligations. The relative strength of these channels produces
a clean revealed-preference mapping into the discount factor.
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B Additional Figures
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Notes: The x-axis is scaled by SCF survey weights, as are the average values within each percentile bin.
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C Lifecycle Model Calibration

First, I calculate the common component g(t) of the log-earnings profile of age for workers
between 24 and 66 years of age. t = age — 24. Following Guvenen et al. (2021), I estimate this
as a quadratic function of age using Ordinary Least Squares for workers between ages 24 and
66. For unemployed workers, I use expected income (x7362) when available, and exclude
workers with zero expected income (i.e. who are not searching for work). The estimating
equation is:

log(Income;;) = go + g1t + gzt2 + €t

The estimated parameters are

Qo 10.7
g1 | 0.0537
¢ | -0.000718

The parameters for the full life-cycle model estimated in Guvenen et al. (2021), also used
in Catherine et al. (Forthcoming), are as follows:

Parameter Value

0 0.959
D, 40.7%
o1 -0.085
1 0.364
0y 0.069
02,1,0 0.714
A 0.0001
Pe 13.0%
Hen 0.271
Oer 0.285
e 0.037
Oa 0.300
0'5‘10 0.196
COITyg 0.768
ay.1 -3.353
by.t -0.859
Cuzs -5.034
Ayt -2.895
a1 0.407

Table B1: Guvenen Parameters
For the purposes of applying this process to SCF data at the individual level, it is not

possible to exactly estimate the state variable Zi nor the individual idiosyncratic level and
slope variables &' and ' as doing so would require observing the full history of earnings.
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Moreover, for the purposes of this exercise, I am mainly interested in the expectation of
earnings growth,10 and in ensuring that (1) I do not underestimate this expectation, nor (2)
underestimate its heterogeneity in the population. To ensure this, I calcualate each earners’
age-adjusted idiosynratic earnings ¢; = log L;; — g(#) and then calculate their position in the
percentile distribution of e7. I then apply these percentiles to the distributions of ' and B to
estimate these variables. Finally, I estimate the state variable as

E[Z]] =log Ly —g(t) — o' — Bt
And estimated future earnings at the k-year horizon as

Et[Lisk] = exp(0*Zis +a + Bi(t + k) + g(t +k))

This approach maximally preserves heterogeneity between individuals of the same age
while avoiding potential underestimation of future earnings expectation.

10 Recall the equation B = exp —(r — y(E¢[Li11] — Lt — 01)) and observe that ignoring o7 will attenuate my
estimates of 5, i.e. move them closer to 1.
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D Reference Materials

Figure C1: Social Discount Rates
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FIGURE 1. THE UK GOVERNMENT SOCIAL DISCOUNT RATE
TERM STRUCTURE (HM TREASURY 2003) FIGURE 2. THE FRENCH GOVERNMENT SOCIAL DISCOUNT
RATE TERM STRUCTURE (LEBEGUE 2005)

Notes: These rate schedules are used by the UK and French governments, respectively, in cost-benefit
analysis. See Arrow et al. (2014).

Figure C2: Humorous Comic from Michael Thrower Chowdhury on X.com

“Yes, the planet got destroved. But based on the discount
rate, that was actually the optimal outcome

57



E Conditional Default Rate Calculations

I calculate the empirical conditional default probabilities using the following formula:

Wd,m
m—1

Oq— Y Wiy
k=1

CDR, =

Table C1: Definition of Terms for the Conditional Default Rate (CDR)

Symbol Definition

CDRy 1, Conditional Default Rate for score decile d in month m

Wi m Number of loans in decile d that default in month m

Oy Total number of loans originated in decile d

22:11 Wy k Cumulative number of defaults in decile d before month m

Oy — Z,’(”;f Wy Number of loans still active at the start of month m (the survivors)

I condition for both contract repayment term (in months) and credit score deciles. I
stress the importance of controlling for ex-ante credit risk in this procedure to the the risk of
heterogeneity in ex-ante credit risk biasing the estimate of . Heterogeneity in ex-ante credit
risk causes the conditional default curve to slope down for spurious reasons: bad credit risks
default quickly, and good credit risks remain in the population, causing the conditional default
curve to slope down even if default decisions are completely due to innate characteristics
of heterogeneous individuals and do not involve an intertemporal decision whatsoever. To
address this concern I estimate the model separately on ex-ante credit risk strata and term
lengths. 56% of auto loans in the sample have repayment terms equal to either 36, 60, or 72
months, with 72 months being the most popular repayment period with over 25% of auto
loans being exactly 72 months in contract repayment term:
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Auto Loan Maturities (Months)
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The raw histogram summary of the timing-of-default data for 72-month auto loans without
conditioning on credit score:
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72-Month Auto Loans by Months to Default
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To condition on credit score, I split the data into deciles. To calculate the deciles, I focus on
the distribution of ex-post defaulters. After conditioning on credit risk:
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Table C2: Score Decile Breakpoints

decile | lower | upper
1 0 466
2 466 505
3 505 529
4 529 549
5 549 566
6 566 583
7 583 602
8 602 624
9 624 657
10 657 850
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Conditional Default Rate

After transforming them into conditional default rates,

Conditional Default Rate by Score Decile (72-Month Loans)
Deciles based on Writeoff Score Distribution

1 2 3
0.008
0.006 0.006
0.006
0.004 0.004
0.004
0.002 0.002 0.002
4 5 6
0.006 0.006
0.005 0.004
0.004 0.004 0.003
0.003
0.002
0.002 0.002
0.001 0.001
7 8 9
0.0025 0.0016
0.003
0.0020 0.0012
0.002 0.0015
0.0008
0.0010
0.001 0.0004
0.0005
0 20 40 60 0 20 40 60
10
3e-04
2e-04
1e-04
0 20 40 60
Months Paid
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F Delta Method Calculations

I calculate standard errors using the delta method, incorporating sampling-based uncertainty
in my estimates of both comparative statics and T. The estimand is By muiatives Which 1

hereafter call simply B:
aﬂ 1/T
B= (ﬁ) : (20)
B+ %
For notational convenience, let
_ _o1 o A
~ oL’ om’ ~ A+B

so that g = RV/T,
Using the delta method, the asymptotic variance of j is approximated by

Var(B) = VgB(9) Var(6) V¢p(d),  wheref = (A,B,T). (1)
The corresponding standard error is

se(B) = \/Var(p).

The gradient vector Vyp contains the partial derivatives of  with respect to (A, B, T),
which are obtained analytically as:

aﬁ 1 B
=F T A(A+B) @2)
ﬁ 1 (1
=B T A+B)’ (23)
0 InR
L=p (-3 ) 24
Let the estimated variance—covariance matrix of (A B T
. o A UAB UAT
Var(@) = | 0AB O'B UBT
UAT OUBT
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Then, the delta-method variance of 3 is

2 () ()

The three inputs (A, B, T) are estimated independently in separate models. The covariance
terms are assumed to be zero, so this simplifies to:

S 1 B 2 1 1 \? (InR)2
~2|t(_ b L 2, Unk)™ 5
Var(:B)N:B [Tz (A(A—l—B)) UA+T2 (A+B) UB+ T4 or| -

The corresponding standard error is therefore

(26)
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