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1 Introduction

I ask in this paper what we can learn about households’ subjective time value of money

from the liability side of household balance sheets when they do not have the opportunity to

equalize their expected utility across time.

The subjective time value of money, also known as the discount factor of utility, is a

primitive object in the study of finance. Any consumption-based asset pricing model with

separable utility1 assumes that individuals maximize a function of the form

max
C

E0

[
∞

∑
t=0

βt · U (Ct)

]
(1)

Where the choice variable C is the consumption strategy which produces the consumption

series Ct, and U() is the single-period utility function. The subjective discount factor β plays

a crucial role in all such models, and along with the consumption and/or wealth growth

processes, defines the market price of risk-free debt. Indeed, in representative-agent models

where there is only a single discount factor to measure, the price of risk-free debt r is given by

the Euler equation

Et [U′ (Ct+1)]

U′ (Ct)
β (1 + rt+1) = 1 (2)

The price of risk-free government bonds is therefore naturally used as a chief data moment

to match when inferring the discount rate β, as in Auclert et al. (2019), Lustig and Chien (2005),

Bansal and Yaron (2004), Alvarez and Jermann (2001); far too many to be exhaustive. Other

approaches in the asset pricing literature such as matching the capital-output ratio (Guvenen

(2006)) or the zero-beta interest rate (Di Tella et al. (2024)) likewise rely on aggregate asset

market data where the representative investor is rich. Indeed, in the United States, only 6.4%

of households hold government savings bonds, the asset used to infer the social discount rate

recommended by the White House (Board of Governors of the Federal Reserve (2022), The

1 I discuss non-separable utility functions in Section 6.
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White House (2023)). As I show in Section 2, only 12% of households participate in any kind

of risk-free financial market investment (excluding transaction accounts), and 75% of risk-free

investments are owned by the top 1%.

Macroeconomic research has largely considered the actual time preferences of infra-

marginal investors, who are largely hand-to-mouth, as irrelevant – as Auclert et al. (2019)

note, public asset market prices are almost totally invariant to the exact discount rates for the

less patient and less wealthy segment of households (borrowers), so long as they are below

those of the patient and wealthy who are the marginal investors in such markets. Essentially,

the time preferences of constrained agents are not identified in common heterogeneous agent

models, as constrained agents have no opportunity to express their impatience in the presence

of credit constraints.

Why is this the case? Crucially, laws permitting the default of debt, which may be called

“bankruptcy” or “limited liability” laws, make it impossible for households to issue risk-free

debt. Households who are net borrowers instead borrow with risky, defaultable debt. Thus, it

is infeasible for the vast majority of households to sell risk-free debt, and most choose not to

purchase it either – retirement savings is mostly done in equity, not debt (Board of Governors

of the Federal Reserve (2022)). Therefore the price of risk-free debt is uninformative about the

time preferences of all but the richest households, other than to establish a lower bound on

their impatience which may be arbitrarily far away from their actual time preferences.

How then should we estimate the time preferences of households who live close to hand-

to-mouth and have negative net asset positions for most of their lives? Other approaches

include laboratory experiments designed to elicit discount rates of participants (Coller and

Williams (1999), Harrison et al. (2002) and many, many others). An obvious criticism of such

studies is that convenience samples in university laboratory studies are not representative

of overall populations. Furthermore, the behavior of individuals in laboratories does not

consistently predict their behavior in everyday life. For these reasons governments by and

large do not use the discount rates which result from such laboratory procedures in policy

analyses.
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Papers which do rely on real-stakes revealed preference do consistently find extremely high

rates of time preference over short time periods, often of over 50% in hyperbolic (β, δ) models

as reviewed by Laibson et al. (2024). While Ganong and Noel (2019) do use a heterogeneity

exercise to estimate that about 1/3 of consumers in their data are extremely impatient “low-β”

types, they stop short of producing full distributional estimates of time preferences. My

estimates in Sections 3 are therefore useful for mapping out the full distribution.

Why is this exercise important? Accurately characterizing the discount rates of represen-

tative populations, not just representative populations, is broadly and deeply important for

public finance, climate finance, household finance, and ethics. The United Kingdom and

France both publish discount rate schedules at time horizons from 1 to 350 years to be used

in cost-benefit analyses of proposed policies (Arrow et al. (2014)); the United States uses

a constant discount rate tied to the market prices of government bonds, and consequently

recently lowered the advised government discount rate from 3% to 2% per year (The White

House (2023)). Hendren and Sprung-Keyser (2020) use 3% as their base discount rate for

evaluating the Marginal Value of Public Funds (MVPF) for various policies, and in robustness

exercises calculate MVPFs for discount rates up to 15% per year. They find that this difference

is material for the cases of early childhood vs. adult education: early childhood education

creates far superior value at a low discount rate, but adult education triumphs at a high

discount rate.

Understanding the degree of impatience, per se, and its distribution in the population

is important as well for analyzing public policy problems such as bargaining between two

different parties who may have different levels of impatience – Rubinstein (1982) shows that

in an alternating offer negotiation, the more patient party wins more surplus. This may be

applied, for example, to understanding collective bargaining between an impatient labor

union and a patient employer. It is also critical for welfare analysis of any intertemporal

government policy – for example, DeMarzo et al. (2023) show that patient citizens are harmed

by a government who is more impatient than they are being able to borrow. Welfare anal-

ysis of government debt policy (Indarte and Kanz (2023)) and climate policy (Farber and
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Hemmersbaugh (1993)) likewise crucially depend on citizens’ impatience. Disentangling

the different roles of (1) changes in marginal utility from (2) impatience is also important

for understanding the demand for financial services in the economy. If household demand

for credit is driven by expectations of high consumption growth, it is more variable and

dependent on economic conditions. If it is driven by impatience, then it is more primitive and

we may expect it to be a more permanent fixture in any counterfactual economy.

I develop two complementary empirical strategies. First, because credit is supplied along

an upward-sloping schedule, the highest interest rate at which a household borrows provides

a lower bound on its true discount rate. Second, in settings where borrowers experience

quasi-experimental variation in short- or long-term payments, the resulting changes in default

probability reveal forward discount rates directly. I show that these comparative statics are

sufficient to recover impatience without observing consumption, income paths, or full loan

histories.

Integrating these approaches yields new empirical estimates of patience across the house-

hold distribution. Using data from the Survey of Consumer Finances (SCF), administrative

credit-report data, and estimates from quasi-experimental studies, I find striking hetero-

geneity. Among credit-constrained households—those most likely to be directly affected by

public policy interventions involving liquidity, repayment terms, or debt relief—discounting

is extremely steep. These results have direct implications for consumer-credit regulation, opti-

mal dynamic taxation, and the design of social insurance programs. They also provide new

structural moments for calibrating or estimating life-cycle models that incorporate borrowing,

liquidity constraints, and default.

The remainder of the paper proceeds as follows. Section 2 documents the limited par-

ticipation of U.S. households in financial markets and illustrates why asset prices provide

little information about the majority of households’ discount factors. Section 3 develops the

revealed-preference lower-bound approach, drawing on observed borrowing rates. Section 4

introduces a sufficient-statistics method for inferring impatience from repayment and default

behavior. Subsequent sections apply these methods to auto-loan data, explore heterogeneity,
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and discuss extensions. The paper concludes by considering the broader implications of steep

impatience for models of household behavior and for policy.

2 Financial Market Participation in the United States: The

Case Against Interpreting Financial Market Prices as Dis-

count Rates

A natural starting point is to ask: for which households can asset prices reveal time prefer-

ences? Standard macro-finance arguments rely on interpreting observed risk-free or risky

returns as the implicit discount rates of the marginal investor. But this logic depends on

broad participation, or at least on marginal pricing being representative of the population

whose preferences we seek to identify. For households that do not save significant amounts in

asset markets, interest rates on Treasury bills or returns on equity convey little about their

intertemporal tradeoffs. The price of risk-free bonds (or any other publicly traded asset) is

not informative about the time preferences of households near the median of the distribution

because the typical household does not participate in the risk-free bond market. I demonstrate

just how few households can be said to have any participation in risk-free asset markets using

the 2022 Survey of Consumer Finances, the most comprehensive representative sample that

exists of households’ total financial positions in the United States (Board of Governors of the

Federal Reserve (2022)). The Survey of Consumer Finances is ideal for the purposes of this

exercise due to its comprehensive information about household balance sheets, including

179 variables that I use in this paper. It is also ideal for estimating the entire distribution of

households in the United States due to its rigorous design, implementation, and inclusion of

precise survey weights to match the Current Population Survey on several dimensions.

One major drawback of the SCF is that it does not include detailed repayment and default

information of loans. It only asks survey participants whether they are behind schedule on

each loan, and if they have declared bankruptcy, neither of which are adequate measures of
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default on particular loans. I address this in Section 4 with a sufficient statistics approach

that can impute discount rates using already-reported estimates from other papers that study

the impact of contract modifications on default rates. These other papers (e.g. Ganong and

Noel (2020) and Dobbie and Song (2020)) are interested in estimating these causal effects in

the context of direct policy outcome evaluation; my model and framework allows them to be

understood in the broader context of time discounting.

Another limitation of relying on the SCF is that geographic identifiers are redacted for

privacy. This leaves me unable to correlate my measures of impatience and its distribution

with other geographic variables such as demographics, political attitudes, and other economic

outcomes not measured in the SCF. This is a potentially fruitful avenue to pursue in future

work. Older versions of the SCF, e.g. from 1983, do include these geographic identifiers,

although the Federal Reserve Board of Governors does warn that the survey design of the

SCF does not necessarily produce representative samples state-by-state, only within each of

the nine major survey districts which comprise the country.

I calculate total risk-free asset holdings as the sum of certificates of deposit and all federal

bonds. I use the SCF survey weights to sort households into population percentiles of total

holdings of risk-free assets.
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Figure 1: Financial Asset Holdings Across the Distribution
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Notes:
This figure plots SCF households sorted by the percentile of total financial assets (scaled by survey

weights). The y-axis reports average holdings within percentile bins, disaggregated by asset category.
Investment assets are defined as liquid, market-traded assets with long-term cash flows. Risk-free

assets include checking and savings accounts. Other assets include home equity and annuities.

Figure 1 shows the distribution of risk-free asset holdings. Only 12% of households

participate in this market whatsoever, with 75% of risk-free assets being held by the top 1%.

If we are to infer discount rates from asset market data at all, the problem can scarcely

be fixed by trying to infer time preferences from public financial asset market data at all,

even including risky assets. If impatience is negatively correlated with wealth (a natural

assumption), then investors will be few and patient while borrowers are many and impatient.

The marginal investor, the one who is indifferent between borrowing and saving, will therefore

be much wealthier and much more patient than the average person. Di Tella et al. (2024)

calculate the “Zero-Beta Rate” as the return on the lowest-variance portfolio of stocks which

has a zero beta to the market and argue that this rate better represents the true market price of

intertemporal substitution, that is, the rate at which the investor with the dollar-weighted
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median demand for borrowing is indifferent between borrowing and lending. They estimate

that this rate has averaged 8.3% per year since 1973 and is highly volatile. There are at least

two reasons, however, why their approach is unfit for the purposes of this present exercise.

For one, the market price of intertemporal substitution is a combination of impatience and

consumption smoothing demand as Equation 2 shows. Secondly, this procedure is silent

on the distribution of time preferences across the entire population and can only identify

the demand for intertemporal substitution of the marginal investor in asset markets. This

may explain why the zero-beta rate that they estimate is so extremely volatile in the time

series: changes in net worth of different segments of the population cause investors to switch

from borrowers to savers or vice versa, shifting the identity of the marginal investor to one

who is much more or much less patient. Finally, the estimates from this exercise are likely

uninformative about primitive characteristics such as impatience, the fundamental object of

interest of this paper, because they are so volatile. I take the view that these highly volatile

discount rate estimates are most likely the result of the identity of the marginal investor

shifting with shifts in economic conditions and the wealth distribution.
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Figure 2: Distribution of Investment, Risk-Free, and Other Assets
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Notes: This figure displays the same percentiles as Figure 1, but separates investment assets from
risk-free and other assets. Again, survey weights scale both the percentile ranks and the average values
within each bin. Investment assets are extremely concentrated among the wealthiest households.

How un-representative is the marginal investor in asset markets? Figure 2 shows the

distribution of all financial assets held by households. I exclude pensions and social security

as they are not tradable. I classify financial assets into “risk free”, “investment”, or “other”

categories. Investment assets are distinguished from other assets by having long-term cash

flows and being traded in liquid markets. These mostly include stocks and bonds, including

assets held in vehicles such as Individual Retirement Accounts. Other assets are mostly

comprised of home equity, informal loans, and annuities. The bottom third of households

hold no financial assets whatsoever, and the middle third only barely hold small amounts of

non-investment assets. The top 1% holds 47% of all financial assets.

We should conclude from this exercise that the time preference rates implied by the returns

of public assets are completely uninformative about the preferences of roughly 30-70% of the
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U.S. population.

Figure 3: Liabilities Across the Asset Distribution
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Notes: Households are sorted along the x-axis by total financial assets, as in Figures 1 and 2, but the
y-axis displays average liabilities. Mortgage debt is widespread through the middle of the distribution,
while unsecured debts cluster among the bottom percentiles.

Instead, in this paper I study the information contained in loan transactions and loan

defaults as an alternative source of information about the discount rates of these households.

Figure 3 shows, for households sorted into the same percentile ranks as in Figure 3, their

liabilities instead of their assets.2 For credit card balances, I only include The center and

left half of this graph is far more populated than Figures 1 and 2, chiefly with mortgage

debt, motivating my decision to utilize information contained in the debt market, rather than

the asset market, to estimate the time preferences of the full distribution of household time

preferences.

2 I confine the analogous graph sorting households by total liabilities to Appendix B. It is uninformative for
this paper’s main exercise because households may have few liabilities either because they are poor and not
creditworthy or because they are rich and not liquidity constrained.
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3 Converting Interest Rates to Discount Rates: The Role of

Income Expectations and Simple Lower Bounds For the

Latter

The interest rates at which borrowers transact does contain direct revealed-preference infor-

mation about intertemporal substitution despite not being sufficient to point-identify it. Due

to classic finance frictions including asymmetric information, lenders require higher interest

rates to extend credit to borrowers perceived as riskier or more likely to default. A household

accepts a loan at the highest rate that does not exceed its true discount rate. Because credit

products are discrete and vary across lenders, we do not observe the precise point at which a

household becomes indifferent. Nevertheless, the maximum observed interest rate among a

household’s active debts provides a lower bound on its underlying impatience.

Staying true to the objective of this paper of relying on revealed preference, I utilize the

interest rates that households borrow at as lower bounds on their prices of intertemporal

substitution. The intuition for this approach is illustrated in Figure 4 schematically. Each

household faces a menu of borrowing opportunities at different maturities and rates. As the

interest rate rises, fewer households are willing to borrow at the margin. The highest rate

at which a household holds debt that is actually accruing interest is, therefore, the highest

observed point where we can rule out the possibility that the borrower is less patient than

that.

Essentially, I assume that individuals face an upward sloping credit supply curve, and

accept offers to borrow at progressively higher interest rates until they are offered a loan at

higher than their true discount rate. Since credit products are discrete, the true discount rate

is therefore unobserved.

For each household in the SCF, I calculate their maximum borrowing rate as the highest

interest rate they are currently paying on debt which is accumulating interest. I include only

loans on which payments are active, not those currently in forbearance – this excludes 67%
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Figure 4: Illustration of Lower Bound Approach
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Notes: This schematic figure illustrates the conceptual framework for interpreting observed borrowing
rates as lower bounds on households’ discount rates. Because the supply of credit is upward sloping
and loan products are discrete, the true discount rate lies at or above the highest observed borrowing
rate.

of student loans. I exclude outlier observations of loans with interest rates above 50% per

year. Unlike Catherine et al. (Forthcoming), who are mainly interested in long-term discount

rates for the purposes of valuing Social Security benefits, I do include credit card debt in this

analysis as it is the marginal credit product used by most households in the sample, and

therefore a valid lower bound for the short-term true discount rate in the model of Figure 4.

Figure 5 shows the distribution of maximum borrowing rates per household. Since credit

card debt in particular continues to represent a puzzle in the literature, in particular the fact

that households with substantial liquid savings often do simultaneously hold credit card debt

(Gross and Souleles (2002)), I calculate these distributions both including and excluding credit

cards. Holding firm to the revealed-preference objective of this paper, I do consider credit

card debt going forward as the marginal borrowing rate for most consumers at short time

horizons and a valid lower bound for their short-run discount rates.
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Figure 5: Distribution of Maximum Interest Rate per Household
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Notes: Panel A shows the distribution of maximum interest rates including credit card debt; Panel B
shows the distribution excluding credit card debt. Debts which are not currently being paid, which
include 67% of student loans, are not included in this graph. The highest interest debt that a household
is currently paying and accruing interest is shown. Represented in these chart are the 86% of Americans
who are paying interest on debt.

The modal maximum borrowing rate is 18%, which continues to be the dominant default

credit card interest rate in the marketplace since it was the most common maximum legal

interest rate in the United States going back to when credit card interest rates were regulated

at the state level (Hall (2024)). Even excluding credit cards completely, over 25% of households

borrow at more than the current treasury rate of 5% per year.

Borrowing rates also display a term structure – they are not constant over time. Indeed,

the UK and French governments explicitly use downward-sloping time discount rates in

cost-benefit analysis, although the United States does not (Arrow et al. (2014), The White

House (2023)). The “yield curve” (the term structure of risk-free interest rates) is a key object of

study in macro-finance and generally slopes upward, unlike the UK and French governments’

discount rate schedules which are downward-sloping. Taken at face value, this result would

appear to imply that the yield curve’s downward slope is due to a term premium demanded

by lenders; not to demand by borrowers.

To understand the term structure of household discount rates, I construct a product-

level dataset of all household debt products in the Survey of Consumer Finance. Table 1

summarizes this product-level dataset in terms of the number of debt products per household.
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Figure 6: Distribution of Maximum Interest Rate per Household
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Notes: Debts which are not currently being paid, which include 67% of student loans, are not included
in this graph. The highest interest debt that a household is currently paying and accruing interest is
shown.

Of households with debt, the majority have only one or two debt products, but a small tail of

households have as many as 11 different debt products.

It is critical to remember that these are lower bounds for r and not β, as used in Equation

2. Section 3 clearly explains and estimates the relationship between r and β, the difference

between them being consumption-smoothing demand (the term Et[U′(Ct+1)]
U′(Ct)

in Equation 2. I

estimate the missing term using the life-cycle model of Guvenen et al. (2021) in the upcoming

subsection.
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Table 1: Households by Number of Debt Products

Products Households Proportion
1 5533 0.35
2 4615 0.29
3 2851 0.18
4 1574 0.10
5 765 0.05
6 336 0.02
7 146 0.01
8 78 0.00
9 30 0.00

10 5 0.00
11 10 0.00

Notes: All households in the SCF with debt who are making payments and accruing interests are
included in this table.

Table 2: Debt Products by Type

Product Avg. Balance Avg. Rate Term (Yrs) Proportion
Credit Cards $4694 16% <1 0.31
Mortgages $212911 3.6% 26 0.23
Auto Loans $16173 5.7% 5.2 0.23
Education Loans $30674 5.5% 16 0.12
Consumer Loans $5919 7.6% 3.9 0.04
Timeshare Loans $320192 4.6% 23 0.03
Lines of Credit $70384 6.5% <1 0.03
Home Improvement Loans $24651 4.6% 8.6 0.01

Notes: All household debt liabilities in the SCF on which payments are being made and interest is
accruing are included in this table.

3.1 Relating Interest Rates to Discount Rates: The Role of Expected Con-

sumption Growth

Recall that the Euler Equation 2 relates expected consumption growth to the pure impatience

parameter β and the representative-agent interest rate r. Rearranging this equation slightly

and taking logs, I can see how the lower bound spot rates, which are analogous to r, are

related to impatience (β):
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Figure 7: Household Debt by Duration and Interest Rate
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Notes: This heat map shows the observed interest rates and maximum durations of every household
debt product in the 2022 Survey of Consumer Finances as well as an OLS trendline. Densities are
scaled by survey weights.

r︸︷︷︸
intertemporal demand

= − log(β)︸ ︷︷ ︸
impatience

+ log Et
[
U′ (Ct+1)

]
− log U′ (Ct)︸ ︷︷ ︸

smoothing demand

(3)

Equation 5 shows the relationship between impatience per se, intertemporal demand;

which intuitively the market interest rate above which an individual wishes to be a saver and

below which an individual wishes to be a borrower), and consumption smoothing demand. I

adjust these estimates for consumption smoothing demand using the detailed and realistic

life-cycle model of Guvenen et al. (2021), which is also used by Catherine et al. (Forthcoming)

to estimate the distributional effects of Social Security on wealth inequality. Intuitively,

individuals may demand credit because they are simply impatient, or because they expect to
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be wealthy tomorrow. Indeed, John Steinbeck famously coined the saying that the poor in

America “see themselves as temporarily embarrassed millionaires”. The life-cycle model is

designed to adjust the estimates of r to give estimates of β which are robust to Steinbeck’s

critique.

Specifically, for workers between ages 25 and 65, annual earnings Lit are given by:

Lit = (1 − νi
t)e

(g(t)+αi+βit+zi
t+εi

t) (4)

Where the variables therein are given by the following processes:

Persistent component zi
t = ρzi

t−1 + ηi
t (4.1)

Innovations ηi
t ∼


N (µη,1, σ2

η,1) with prob pz

N (µη,2, σ2
η,2) with prob 1 − pz

(4.1)

Initial Condition zi
0 ∼ N (0, σ2

z,0) (4.3)

Transitory shock εi
t ∼


N (µε,1, σ2

ε,1) with prob pε

N (µε,2, σ2
ε,2) with prob 1 − pε

(4.4)

Nonemployment duration νi
t ∼


0 with prob 1 − pν(t, zi

t)

min{1, Exp{λ}} with prob pν(t, zi
t)

(4.5)

Prob. of Nonemp. shock pi
ν(t, zt) =

ea+bt+czi
t+dzi

tt

1+ea+bt+czi
t+dzi

tt
(4.6)

In the SCF, I observe an individual at a point in time at a certain age, labor income,

and employment status, allowing me to estimate the distribution of individuals’ expected

earnings at the 1 year, 5 year, and 10 year horizons. This process is explained in detail, and

the calibration is provided, in Appendix C. Essentially, I first reverse-engineer the persistent

state variable zi
t from the observed values of income. When an individual is unemployed I

impute it using the expected income variable in the SCF, which essentially is expected income

in the individual’s counterfactual state of employment. I estimate the age-specific average

function g(t) as a quadratic equation of log unemployment-adjusted income.
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In principle, estimating the idiosyncratic level and slope parameters αi and βi separately

from the state variable zi
t requires observing the full history of workers’ earnings paths. Lack-

ing that information in the SCF, I take a conservative approach which both (1) minimizes

the variance of workers’ expected earnings path and (2) maximizes heterogeneity between

workers, in order to give this model the best possible chance to match the observed high

and variable interest rates at which households are observed to borrow. Details are given

in Appendix C. Intuitively, I matching each households’ deviation from the age-specific

unemployment-adjusted earnings function and assign them idiosyncratic level and slope

parameters αi and βi consistent with their relative position in the distribution and the uncondi-

tional marginal distributions of those variables. The remaining parameters are taken directly

from the calibration in Guvenen et al. (2021). The result of this is an extremely sophisticated

projection of the expected future income of every household in the SCF conditional on their

primary earner’s age, the household’s present income, and employment status.

I perform several exercises to validate that this model produces reasonable implied esti-

mates of income growth. Even though the model only takes as an input households’ income

and primary-earner’s age, the model-implied estimates correlated with households’ sub-

jective levels of optimism about income growth according to the SCF. Table 3 shows the

model-implied income growth estimates disaggregated by households’ reported levels of

optimism, which are reported as either above, equal to, or less than inflation to the SCF

surveyors.

Table 3: Model-Implied Income Growth Expectations by Subjective Optimism Levels

Optimism E[∆Lt+1] N
>Inflation 0.0315 2900
=Inflation 0.0279 5561
<Inflation 0.0274 4609

Notes: The categorical “Optimism” variable is taken from SCF question x7364 and asks whether the
respondent expects their family income to grow more, the same, or less than inflation over the next
year. ∆Lt+1 is an abbreviated notation meaning log Lt+1 − log Lt.

As can be seen from the table, there is a 40 basis-point gap, or 15% of the base value, in the
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model-implied income growth expectations of those who report having high income growth

expectations over those who do not.

Figure 8: Model-Implied E[∆Lt+k] by Age and Income
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Notes: Lines show the implied expected growth rate of log income at the k-year horizon, denoted
E[∆Lt+k], aggregated unconditionally by age and by income ventiles. Standard deviations of each
variable within each age group and income group are depicted as error bars. 1y, 5y, and 10y implied
expectations are shown.

I also plot the level and spread of these estimates by each of age and income uncondi-

tionally. Figure 8 shows in two panels the distribution of these estimates. There is a clear

and consistent downward slope with regards to age, as is to be expected. Within each age

group, there is a dispersion of expectations, with standard deviations depicted in error bars.

The pattern with regards to income ventiles is less consistent. In all cases, the expectations

at each horizon are tightly correlated. Overall, these validation exercises confirm that the

model produces estimates of expected income growth as a function of age and income that

are consistent with theory and with subjective expectations of income growth.

I now turn to the question of whether these income growth expectations predict borrowing

behavior. Equation 5 predicts that intertemporal demand r is is the sum of the pure impatience

parameter β and the demand for intertemporal smoothing, which is governed by expected

income growth. If individuals have CRRA preferences with risk-aversion parameter γ, then

equation 2 can be rewritten as
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− log β = r − γ(Et[∆Lt+1]) (5)

Thus, if I empirically estimate the equation

ri,t+1 = α0 + α1Et[∆Lt+1,i] + εit

The empirical estimate of α1 should exactly line up with the risk-aversion parameter γ,

and all remaining heterogeneity in εit can be attributable to heterogeneity in the impatience

parameter β. Table 4 reports the results of this exercise. I use the 1-year model-implied

growth rate in all specifications because, as Figure 8 shows, the model-implied growth rates

at 1-10-year horizons are all tightly correlated.

The first thing to observe is that the R2 of these estimates is extremely low, no higher

than 2.2% R2 even when including age fixed effects, with within-R2 being less than 1% both

when predicting maximum interest rate on any debt and interest rate on non-credit-card

debt at the individual level in the SCF. The second thing to observe is that it does not matter

qualitatively whether or not age fixed effects are included in the regression in terms of the

sign and significance of the estimates. The most interesting finding is that the sign of the

estimate flips depending on whether credit card debt is included. When credit card debt is

included, households who choose to borrow at the highest interest rates are indeed those

with the highest expected labor income growth, as would be predicted by consumption

smoothing. However, the magnitude of these estimates, which range from 43 to 18 depending

on whether age fixed-effects are included,3 are far out of scale with reasonable expectations

of the risk-aversion parameter γ.4 When credit cards are excluded, the relationship goes the

opposite direction from theory: those borrowing at higher rates have lower expected labor

3 Theory implies that age should not be controlled for; and due to the construction of the model estimates,
including age strongly reduces the coefficients because it is tightly correlated with the constructed measure
of income growth expectations. It is included for completeness and to potentially control for age-specific
heterogeneity in beliefs not captured by the model. In any case it is qualitatively irrelevant and the interpretation
of the results is not affected by its inclusion or exclusion.

4 in Epstein-Zin utility, discussed in Section 6.1, replace “risk-aversion parameter γ” with “inverse-IES parameter
1/ψ” in this sentence.
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Table 4: Model-Implied Expectations, Not Stated Expecatations, Predict Borrowing Rates

Variables max(r) max(r ex cards) max(r) max(r ex cards)
E[∆Lt+1] 43.44∗∗∗ -27.06∗∗∗ 17.75∗∗∗ -7.612∗∗∗

(8.940) (4.896) (3.415) (2.517)
Optimism -0.1044 0.0346 -0.0739 0.0885

(0.2591) (0.2294) (0.1063) (0.0784)
Constant 14.48∗∗∗ 4.585∗∗∗

(0.2643) (0.1948)

Fixed-effects
Age Yes Yes No No

Fit statistics
Observations 13,069 13,069 13,069 13,069
R2 0.01876 0.02189 0.00214 0.00083
Within R2 0.00781 0.00555

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

income growth. In any case, the extremely low R2 of these regressions indicate an extremely

poor fit of the consumption-smoothing model for explaining household borrowing rates,

leaving heterogeneity in impatience as the remaining source of variation.

One criticism of this approach is that individuals’ expectations may not be either irrational,

or that they may have private information unobserved to the econometrician. However, the

inclusion of the optimism variable from the SCF shows that households’ subjective beliefs

about income growths, controlling for the model’s objective estimates, appear to be entirely

irrelevant.

With estimates of the distribution of Lt+1 in hand I can return to equation 2 and empirically

calculate the β implied by r. I calculate β using a no-smoothing benchmark, that is, calculating

the demand for consumption smoothing from the initial condition of Ct = Lt, that is, hand-to-

mouth consumption. Using the life-cycle model’s numerical estimates of E[Lt+1] and σL,5 I

can calculate the upper bound of βi (equivalently, the lower bound of impatience) βUB,i for

each observation in the SCF. I use a reasonable relative risk aversion parameter of 1.9 from

5 To be conservative, i.e. avoid estimating a β further from 1 than reality, and to avoid making a strong
assumption about risk preferences, I use σL = 0 as the base case in this estimation.
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Laibson et al. (2024).

Figure 9: Implied Distribution of Upper-Bounds on Impatience βs
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Notes: Implied upper-bound βs are calculated using Equation 5 using γ = 1.9

Figure 9 shows the distribution of implied upper bound βs, equivalently described as

lower bounds of impatience. Interestingly, 20% of households borrow at lower interest rates

than their implied consumption-smoothing demand would suggest, suggesting according

to this procedure that they have negative rates of time preference. While this may seem

counterintuitive, consider that Epstein and Zin’s first attempt to fit their model to asset market

data (Epstein and Zin (1991)) resulted in them estimating negative rates of time preference,

and that the marginal investor in asset markets is likely drawn from the most patient segment

of the distribution. The median implied upper bound β is 91%, indicating at least 9% annual

discounting of utility. 2% of people have implied βs below 75%, indicating that they discount

utility by at least 25% per year. In the next Section, I describe and give the results of a
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procedure with more extensive data and identification requirements that gives point estimates

instead of upper bounds.

4 Point Estimates: A Sufficient Statistics Approach Using

Default Decisions

In this section, I ask what we can learn about households’ impatience from debt repayment

decisions, rather than debt transaction decisions which, as discussed in Section 3, can only

hope to provide a lower bound to impatience even in the best possible world. I show how in a

simple endogenous default model with separable utility, the causal effect on default decisions

of identified shocks to repayment obligations at two different time horizons is sufficient to

point-identify the subjective rate of time preference (β) between those two different points

in time. The economic intuition of this approach is that if borrowers are very impatient,

they will be very sensitive to short-run changes in their payment schedule; conversely, a

patient borrower will strategically default only when there are long-term benefits from doing

so. While interest rates provide valuable lower bounds, they do not point identify forward-

looking discount factors. For this, we must turn to settings in which borrowers’ repayment

obligations are experimentally or quasi-experimentally manipulated. In such environments,

repayment or default responses to changes in short- and long-term payments reveal the

relative weight households place on the near versus distant future.

This section develops a unified sufficient-statistics framework that interprets such re-

payment sensitivities as direct evidence of impatience. The intuition is simple. Suppose a

borrower faces a repayment obligation m in the first period and (L − m) in the second period

of a two-period debt contract. If we perturb m or L slightly—for instance, through policy

interventions that shift borrowers’ repayment schedules—the borrower’s default decision

may change. The magnitudes of these changes encode the tradeoff the borrower makes

between immediate consumption relief and future repayment relief governed by the discount

24



factor.

This model has several powerful advantages. For one, it delivers point estimates instead

of lower bound. Unlike laboratory experiments, it utilizes revealed preference with real stakes

and realistically common time horizons. Unlike approaches based on asset market data, it

can be calculated for the majority of U.S. households who do not meaningfully participate

in financial markets. It explicitly accounts for the endogeneity of household default and its

timing, and indeed uses that information to obtain the estimate. It requires no functional

form assumption for the utility function, only requiring that it be increasing, concave, and

time-separable.6 This model is particularly powerful in its ability to relate the discount rate to

readily-measurable moments which are indeed measured in existing papers in the literature.

So far I have identified two suitable papers which measure and report the required estimates

with valid causal identification strategies: Dobbie and Song (2020) and Ganong and Noel

(2020).

Dobbie and Song (2020) use an explicit randomized controlled trial which varies short-term

and long-term payments due on individuals’ modified credit card repayment plans. Ganong

and Noel (2020) utilize a sharp regression discontinuity design in the HAMP mortgage

modification program which affected mortgage repayments due at different time horizons.

I interpret their results through the lens of this unifying model. The model compares the

effect of shocks to repayment obligations at two different time periods to impute an implied

forward rate between those two time periods. I show that the empirical size of these two

effects are sufficient statistics for the implied forward rate between those two time periods.

Standard errors are also easily calculated with the delta method.

This method can be used to calculate implied time preferences for any paper which reports

the effect on repayment of two or more shocks to payments owed at two or more time

horizons and does not require the full data. It also accommodates any increasing concave

utility function, not requiring any functional form such as CRRA or EZKP utility as I assume

6 I discuss extensions to non-time-separable utility functions in Section 6.1. The assumption of time-separability
is not restrictive, but additional assumptions are needed wheen the intertemporal elasticity of substitution is
divorced from risk-aversion.
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in Sections 3 and 6.1.

4.1 Two-Period Endogenous Default Model

The basis of the model is a 2-period endogenous default model which features the same basic

trade-off as Indarte and Kanz (2023). The household weighs penalty of default (legal, social,

or dynamic) against the value of extra consumption from foregoing debt payments. The

model is set in 2 discrete time periods t ∈ {1, 2}, which represent the two dates at which

payments are due that can be potentially modified. The starting balance of the loan at t = 1

is defined as L, and the individual payment size, assumed to be constant, is denoted m (for

“monthly payment”). The second period payment is therefore L − m in the two-period case.

In this base case, L = 2m (constant monthly payments).

I assume only one dimension of uncertainty to make the model tractable: period 1 income

is uncertain and is distributed y1 > 0 ∼ F(y1). Note that no specific assumption on the

income process is necessary, other than that it is sufficiently uncertain to generate default:

if income is too low, the marginal utility is high, and eventually exceeds the punishment

of default. The punishment for default is equal to σ, as in Indarte and Kanz (2023). This

is a comprehensive sum of all punishments that befall a borrower who defaults: dynamic

exclusion from the credit market, social stigma, and attempts by the lender to garnish wages.

The borrower has a strictly increasing and strictly concave utility function over consump-

tion, additive across period with a time discount factor of β

VP
2 = u(CP

2 )

VN
2 = u(CN

2 )− σ

VP
1 = u(CP

1 ) + β

[∫ y∗2

0
VN

2 dF(y2|y1) +
∫ ∞

y∗2
VP

2 dF(y2|y1)

]
VN

1 = u(CN
1 ) + βVN

2

(6)

Where y∗2 is defined implicitly by the borrower’s endogenous default threshold in period
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2. The budget constraints are:

CP
1 = y1 − m

CN
1 = y1

CP
2 = y2 − (L − m)

CN
2 = y2

(7)

Here P and N denote payment and non-payment, respectively. The borrower defaults if

the utility gain from avoiding payment exceeds the punishment σ, which summarizes legal,

social, and dynamic consequences of default.7

Let y∗2 be the income threshold at which the borrower is indifferent in period 2:

u(CP
2 (y

∗
2)) = u(CN

2 (y∗2))− σ. (8)

Similarly, the borrower defaults in period 1 if the value of non-payment today plus the

continuation value of facing the threshold y∗2 tomorrow exceeds the value of payment today

plus discounted continuation value. The probability of default in period 1 is therefore

p1 = F1(y∗1),

where y∗1 is determined implicitly by

u(CP∗
1 ) + βE[VP

2 ] = u(CN∗
1 ) + βE[VN

2 ]. (9)

Equations (8) and (9) jointly determine default behavior. I do not need closed-form

solutions for y∗1 or y∗2 to study comparative statics. Instead, I focus on how small changes in m

and L perturb p1 and thereby reveal the discount factor β.

7 This formulation follows a large literature modeling default as the result of a discrete comparison between
current utility gains and continuation-value losses from dynamic exclusion.
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4.2 Default Sensitivities as Sufficient Statistics

Differentiating p1 = F(y∗1) with respect to m and L yields:

∂p1

∂m
= f (y∗1)

∂y∗1
∂m

,
∂p1

∂L
= f (y∗1)

∂y∗1
∂L

.

Under the envelope condition for the default threshold in period 1, the comparative

statics of y∗1 follow from differentiating (9). Straightforward algebra (with full derivation in

Appendix A) yields the two key sensitivities:

∂p1

∂L
= f (y∗1) β(1 − p2)

E
[
u′(CP

2 (y2)) | y2 > y∗2
]

u′(CP∗
1 )− u′(CN∗

1 )
,

∂p1

∂m
= f (y∗1)

u′(CP
1 )

u′(CP∗
1 )− u′(CN∗

1 )
− ∂p1

∂L
.

(10)

These expressions capture the essence of the identification strategy. A marginal increase in

m reduces CP
1 , thereby increasing current marginal utility. A marginal increase in L increases

the future payment burden and thus reduces the continuation value for borrowers who

expect to repay in period 2. The ratio of these two effects reveals the intertemporal preference

parameter that equates marginal utilities of consumption across periods.

These comparative statics can be measured empirically and mapped to the primitives

of the model. In particular, I can isolate the discount rate β by rearranging the previous

equations as such:

∂p1
∂L

(1 − p2)
∂p1
∂m + ∂p1

∂L

= β
E
[
u′ (cP

2
)
|y2 > y∗2

]
u′ (cP

1

)
This simplifies extremely elegantly for the simplifying case of y2 = y1 (or, more generally,

E[u′(y2 − m)|y2 > y∗2 ] = u′(y1 − m)), that is, the case where expected marginal utility tomor-

row is exactly the same as marginal utility today. This implies no late default (p2 = 0), which

is not only an extremely convenient assumption but very nearly empirically true, as shown in
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Appendix E. It also implies that short-term expectations of income growth are close to zero,

which is also empirically consistent with the data in Section 3. This simplification implies

that:

E
[
u′
(

cP
2

)
|y2 > y∗2

]
= u′

(
cP

1

)
This can easily be adjusted by putting bounds on

E[u′(cP
2 )|y2>y∗2]

u′(cP
1 )

, for example using the

life-cycle model in Section 3. Quantitatively, expectations of income growth are not high

over the length of auto loans (approximately 5 years) either with rational expectations or in

perceptions. The result of the most simple assumption (that the period one income shock is

the only source of uncertainty), is that I obtain the surprisingly simple expression:

∂p1
∂L

∂p1
∂m + ∂p1

∂L

= β (11)

This maps neatly to intuition: if default decisions are entirely forward-looking and strate-

gic, with borrowers who are not liquidity constrained and do not value present and future

consumption differently, then the observed sensitivity of default will be purely a function

of the total loan balance and the sufficient statistic formula will evaluate to β = 1: perfect

patience. On the other extreme, if default decisions are entirely myopic and borrowers do

not consider the future whatsoever, the default decision is purely a function of the monthly

payment and the sufficient statistic formula will valuate to β = 0: perfect myopia. The

formula smoothly nests all intermediate cases, where borrowers put some weight on current

conditions and some weight on future conditions – the intermediate point is their discount

rate.

The assumption of no default in period 2 is palatable in large part for empirical, not

only theoretical reasons: late default, especially on auto loans, is extremely rare. Section E

shows these calculations. Not only are defaults extremely rare in the late months of auto

loan contracts, but they are rare conditionally on narrow credit score categories and attrition.

One might worry that the default rate as a function of time outstanding on the loan might
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slope downwards for spurious reasons, including the elimination of high default risks from

the population early. The calculations in the appendix show that this is not the case: even

conditioning on narrow credit score groups and adjusting for attrition to calculate true

conditional default rates, very few borrowers default late in the life of the contract.

4.3 Recovering the Annual Discount Factor

The model is set in two periods, and the formula produces the revealed-preference discount

rate between those two periods. If the term structure slopes down (for example, if it is

hyperbolic as in Laibson et al. (2024)), then this multi-period discount rate, a single number, is

not sufficient to identify the entire term structure. To proceed, I proceed under the assumption

of constant and time-consistent discount rates, and transform this from a cumulative rate over

a variable time period into an annual discount rate, I adjust it as:

βannual = β1/T
cumulative (12)

Where T is calculated as the time between average default and average loan maturity.8

This definition of T is chosen to best represent the economic tradeoff that the borrower makes,

weighing in their decision both current consumption at the time at which the default decision

is made and marginal future consumption at the loan end date affected by variation in the

total loan balance.

I calculate standard errors using the delta method, incorporating sampling-based uncer-

tainty in my estimates of both comparative statics and T. The estimand is βcumulative, which I

hereafter call simply β:

β =

(
∂p1
∂L

∂p1
∂m + ∂p1

∂L

)1/T

(13)

In Appendix F, I provide the full delta method calculations.

8 In the auto loan sample (introduced later in Section 4.5) this is 3.2 years unconditionally.
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4.4 Application in Experimental and Quasi-Experimental Settings

Armed with the sufficient-statistics formula (13), we can reinterpret results from quasi-

experimental studies through the lens of time preferences. Two prominent settings allow direct

computation of A and B: ?, who study credit card borrowers, and ?, who study mortgage

borrowers.

At first glance, these studies report seemingly contradictory findings. Dobbie and Song

estimate that reducing short-term payments has almost no effect on default probability, while

long-term payment reductions matter substantially. Ganong and Noel report almost the

opposite: short-term payment relief affects repayment behavior far more than long-term

mortgage forgiveness. Using their point estimates, however, and controlling for the vastly

different time horizons between the respective shocks, both studies imply surprisingly similar

discount factors.

Let TDS and TGN denote the effective horizons in each study. Using the reported compara-

tive statics:

βGN = 0.76 per year,

βDS = 0.58 per year.

Despite surface-level differences, both populations appear highly impatient. Credit card

borrowers are even more impatient, consistent with intuition: such borrowers tend to be

liquidity constrained, have limited access to low-cost credit, and may face greater income

volatility.

These findings demonstrate the power of the sufficient-statistics approach. Without

needing full structural models or microdata, and without imposing parametric assumptions

on income dynamics or utility curvature, we can infer long-run forward discount factors for

heterogeneous populations.

In Section 4.5, I apply this approach to auto loan data, where differences in maturity

and payment amounts across borrowers provide the variation required to estimate A and B
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directly.

4.5 Application to Auto Loan Data

Auto loans offer an attractive empirical environment for applying the sufficient-statistics

method. Maturities vary substantially across borrowers, even conditional on credit score,

and contractual payments are highly salient. Moreover, auto loans constitute one of the most

common forms of installment credit in the United States, with wide participation across the

income distribution. For many households—especially those with limited liquid wealth—auto

loans represent the primary medium through which repayment and default decisions reveal

intertemporal tradeoffs. I use a 1% random sample of U.S. credit reports obtained through

a partnership with one of the nation’s leading credit bureaus. The sample includes over six

million auto loans originated across the past decade. Table 5 summarizes the key variables:

loan amounts, balances, monthly payments, maturities, credit scores, ages, and imputed

incomes.

Table 5: Summary of Auto Loan Sample

Variable Non-null Obs. Mean Median 25th Pctl 75th Pctl

Loan Amount 6313128 22800.77 20000 13209 29122
Loan Balance 6404640 20440.13 17500 9877 27216
Monthly Payment 6197142 2241.88 395 292 533
Maturity (Months) 6408812 60.24 61 48 72
Credit Score 6408812 771.76 700 623 774
Age 6392929 45.48 45 33 56
Estimated Income/Mo 6316100 3885.30 3417 2500 4667

The repayment horizon is typically five years (60 months), and the three most popular

maturities of 36, 60, and 72 months account for over half of observations. Figure 10 shows

origination volumes by year, indicating steady and large coverage of this data since 2010.
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Figure 10: Auto Loan Originations Over Time
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Notes:
Number of auto loans originated in the 1% credit bureau sample, plotted by origination year.

To identify the comparative statics ∂p1/∂m and ∂p1/∂L, I leverage heterogeneity in con-

tractual maturity across borrowers with the same credit score. A key identifying assumption,

necessary to proceed, is the following exclusion restriction:

Conditional on credit score, maturity and loan size are as-if randomly assigned with respect to
pre-existing determinants of default.

This assumption is plausible given lenders’ reliance on standardized underwriting algo-

rithms that map credit scores to allowable loan structures. While more creditworthy borrowers

may indeed receive different contract terms, these differences are mediated almost entirely by

credit score, which is observed. Conditional on score, residual sorting across maturities must

be ruled out.

Under this assumption, variation in m and L across similar-score borrowers yields quasi-

experimental shifts in repayment burdens. Because households with different maturities

but identical credit scores face similar income risk, any systematic difference in default
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hazard can be attributed to the intertemporal allocation of payments rather than underlying

heterogeneity.

The assumption is essentially an exclusion restriction that pre-existing creditworthiness

only affects maturity and loan size through observable credit score. That is, maturity and

loan size are as-if randomly assigned conditional on credit score: while better borrowers may

systematically acquire different loan terms (which is certainly the case), the credit score is an

accurate summary statistic for the borrower’s creditworthiness as it is used to define the loan

terms. This is a good assumption because lenders typically use standardized underwriting

technologies to decide loan terms based on verifiable information (See, e.g., Yannelis and

Zhang (2023)), although this cannot itself be observed in the data per se. The result of

this assumption is that conditioning on credit score, the only remaining unknown factor

which decides whether the individual will default on their loan is the income shock that

they experience after taking out the loan, which lenders and borrowers are no more able to

predict than the bank. I document the extent to which both monthly payment size and total

loan size are correlated with default rate conditional on narrow credit score categories and

zip-by-month fixed effects. In principle, this correlation may be driven by adverse selection

or moral hazard: the estimation in this section is exactly correct in the limiting case where

the correlation is entirely due to the moral hazard (that is, larger loans cause borrowers to be

more willing to decide to default) that I model, and not at all due to adverse selection (worse

borrowers take larger loans). The model explicitly calculates the discount rate under this

assumption of moral hazard, precluding the possibility of adverse selection. This is arguably

a strong assumption, as it precludes the possibility of privately-known information by the

borrower or lender that would result in larger or longer loans being systematically assigned

to borrowers whose true creditworthiness is better than their credit score suggests. I argue

that despite this potential defect, this assumption is the most palatable one consistent with

being able to estimate the model consistently and robustly across time, geography, and credit

score categories. To bolster the plausibility of this assumption I show that the unconditional

default rate as a function of maturity of auto loan contracts varies substantially but not in any
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systematic way. Lenders and borrowers must come to a joint agreement on the size of the

loan and the maturity of the loan as a function of the credit score – this endogenous process

removes the average unconditional correlation between default rate and default probability

while still leaving room for idiosyncratic factors to shift the loan size and maturity (in a

mean-zero way), creating an ex-post correlation between payment size/loan size and default

rate. The assumption is also bolstered by a simple, directional incentives argument: if lenders

could privately observe worse (better) credit risks conditional on credit score, they would

want to give those borrowers smaller (larger) loans, which is the opposite of what I observe in

the data.

The difficulty of separately identifying adverse selection from moral hazard has been

recognized widely in the literature at least since Ciappori and Salanie (2000), and the gold

standard approach (Karlan and Zinman (2009) requires experimental variation which is

infeasible to collect at scale in the U.S. population. Even if the Karlan and Zinman test could

be performed on a representative sample of US borrowers, it would still be insufficient to

identify adverse selection at the market outcome level – this test still only identifies the

narrow adverse selection present in a single instance of the takeup decision of a single loan.

In the absence of such experimental data and faced with this identification problem, I find

the assumption of no adverse selection conditional on credit score to be the most palatable

assumption possible in this setting to answer the question at hand, which is the change in

default rate caused by higher loan balances and higher monthly payment. I am encouraged in

believing that the remaining variation in monthly payment and total balance, after controlling

for credit score and zipcode-by-month fixed effects, is likely to be purely idiosyncratic by

Figure 11, which shows a highly idiosyncratic relationship between unconditional default

rate and loan terms. I therefore proceed under the necessary assumption that lenders set

loan terms in such a way as to remove the correlation between loan term and default rate

by, for example, higher downpayments for less creditworthy customers, and that differences

in contract monthly payment and origination balance which are not explained by narrow

credit score fixed effects are responsible for changes in default rate that are not explained by
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Figure 11: Idiosyncratic Unconditional Relationship Between Maturity and Default
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a pre-existing and unobservable correlation between creditworthiness and contract terms.

Furthermore, even if there does exist adverse selection in the direction consistent with the

results in Table 6, if the degree of adverse selection is equal at all maturities it will cancel

out due to the division operation in Equation 11. Therefore what is needed to violate this

exclusion restriction and bias the estimates is maturity-varying adverse selection in the

opposite direction predicted by lender incentives.

Table 6 reports estimates from two separate logit probability models in which the depen-

dent variable is an indicator for default. Each specification includes an identical set of fixed

effects—score-ventile fixed effects and zipcode–by–month fixed effects—which flexibly absorb

borrower risk classification and local economic conditions at the time of loan origination.

The first regression estimates the sensitivity of default to the short-term required payment

burden. Specifically, I estimate

Defaulti = βS log(MonthlyPaymenti) + γv(i) + δz(i),t(i) + εi, (14)
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where γv(i) denotes score-ventile fixed effects and δz(i),t(i) denotes zipcode–month fixed

effects. The coefficient βS measures the percentage-change sensitivity of default with respect

to the current monthly payment obligation. The estimate of βS = 0.50 (s.e. 0.0083) indicates

a strong and precisely estimated association: borrowers facing higher required monthly

payments are substantially more likely to default, holding constant long-term obligations and

all fixed effects.

The second regression instead focuses on the long-term debt burden by replacing monthly

payments with the logarithm of total payments owed over the life of the loan:

Defaulti = βL log(TotalPaymentsi) + γv(i) + δz(i),t(i) + εi. (15)

Here βL captures the sensitivity of default to the overall, long-horizon repayment obliga-

tion independent of the short-term payment schedule. The estimate βL = 0.4283 (s.e. 0.0058)

likewise shows a strong positive association: larger total repayment obligations are linked to

a higher probability of default.

Across both specifications, the inclusion of rich fixed effects ensures that identification

comes from within–zipcode–month and within–score-ventile variation in payment obligations.

The results highlight that default risk is highly responsive to both short-term liquidity pressure

(monthly payment) and long-term financial burden (total payments). The somewhat larger

short-run coefficient suggests that the immediate payment obligation exerts a slightly stronger

effect on default behavior than the overall debt load, though both channels are quantitatively

important.
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Table 6: Estimates of Default Sensitivity to Short and Long-Term Payment Obligations

Dependent Variable: Default
Model: (1) (2)

Variables
log(Monthly Payment) 0.5000∗∗∗

(0.0083)
log(Total Payments) 0.4283∗∗∗

(0.0058)

Fixed-effects
Score Ventile Yes Yes
Zip Code x Month Yes Yes

Fit statistics
Observations 1,434,210 1,434,208
Squared Correlation 0.37087 0.37278
Pseudo R2 0.37593 0.37766
BIC 3,423,797.9 3,421,505.8

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Here, I report the results of the sufficient statistics exercise deployed over the entire auto

loan dataset, whereby I use the multiple regression analysis described above to estimate

Equation 11 with standard errors as described in Appendix F:

Table 7: Estimates and Standard Errors of β

Variable Estimate Std. Error Variable Description

∂p1

∂m
0.500 0.008 Default sensitivity to monthly pay-

ment
∂p1

∂L
0.428 0.006 Default sensitivity to total payments

T 3.223 0.004 Average term (in years) between de-
fault and loan end date

β 0.787 0.003 Derived annualized discount rate pa-

rameter: β =

(
∂p1
∂L

∂p1
∂L + ∂p1

∂m

)1/T
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4.6 Heterogeneity

5 Heterogeneity in Estimated Discount Factors

The preceding section establishes that, on average, auto loan borrowers exhibit steep impa-

tience. But the distribution of β is highly heterogeneous. Understanding this heterogeneity is

crucial: it informs which households are most sensitive to liquidity shocks, which are most in

need of consumption smoothing, and how credit policies redistribute welfare across different

types.In this section, I use variation across income, credit score, and geography to construct

conditional distributions of discount factors. This approach yields a granular mapping from

borrower characteristics to impatience that is both intuitive and empirically rich.

This section presents heterogeneity analyses of the estimated discount factor β across (i)

credit score ventiles, (ii) income ventiles, and (iii) U.S. states. For each subgroup, the following

procedure is applied independently:

Define a partition of the data (score ventile, income ventile, or state).

Within each partition, recompute score ventiles to preserve fixed-effects structure.

Estimate two logistic fixed-effects models of default: one on log(scheduled payment)

and one on log(total payments).

Compute the derivative sensitivities of default with respect to payment size and loan

length.

Estimate the average time to default and the implied intertemporal horizon ∆T.

Obtain β and its delta-method standard error.

Plot the results with point estimates and ±2 standard-error bands.

Figure 12 shows heterogeneity by credit score ventile, Figure 13 shows heterogeneity by

income ventile, and Figure 14 shows heterogeneity across states. The full set of state-level

estimates is reported in Table 8.
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Figure 12: Estimated Discount Factor β by Credit Score Ventile. Error bars show ±2 standard
errors.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20
Score Ventile

B
et

a 
(±

2 
S

E
)

Beta by Score Ventile

40



Figure 13: Estimated Discount Factor β by Income Ventile. Error bars show ±2 standard
errors.
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Figure 14: Estimated Discount Factor β by State (Sorted by Point Estimate)
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Table 8: State-Level Discount Factor Estimates

State Beta SE N
MN 0.6912 0.1188 106299
OR 0.7187 0.0289 76697
WA 0.7188 0.0346 128864
IA 0.7649 0.0241 72523
SC 0.7661 0.0158 103495
NE 0.7662 0.0406 39562
CA 0.7673 0.0119 623313
IN 0.7702 0.0131 139600
AK 0.7725 0.0398 12478
MO 0.7728 0.0185 127183
WI 0.7728 0.0245 107439
AZ 0.7743 0.0166 130653
HI 0.7776 0.0760 20135
OH 0.7787 0.0151 237281
ID 0.7790 0.0370 36909
CO 0.7799 0.0221 107594
UT 0.7808 0.0229 70515
KY 0.7825 0.0188 83162
NC 0.7844 0.0095 214638
VA 0.7855 0.0167 164137
KS 0.7855 0.0308 57470
PA 0.7874 0.0192 250457
IL 0.7914 0.0136 221882
CT 0.7935 0.0424 58263
AL 0.7960 0.0206 106409
WY 0.7964 0.0552 13067

State Beta SE N
NV 0.7968 0.0241 56195
NJ 0.7980 0.0210 160247
MS 0.8023 0.0205 58887
FL 0.8029 0.0080 454937
TN 0.8063 0.0148 137186
MD 0.8073 0.0191 117419
PR 0.8082 0.1184 41139
RI 0.8103 0.1650 16993
GA 0.8105 0.0101 203167
MI 0.8193 0.0133 205098
ND 0.8208 0.1331 17054
NM 0.8209 0.0340 42475
VT 0.8224 0.4009 16030
NY 0.8227 0.0134 306696
OK 0.8246 0.0157 84997
AR 0.8256 0.0241 63014
MA 0.8293 0.0296 107804
LA 0.8306 0.0190 89300
NH 0.8344 0.0249 34025
TX 0.8363 0.0073 605128
WV 0.8381 0.0602 41744
SD 0.8436 0.0491 20326
DE 0.8602 0.0798 18860
MT 0.8740 0.0781 20799
ME 1.1407 0.4449 31992

In the upper score ventiles, the β estimates exhibit extremely wide error bands. This is

mechanically driven by the fact that high-score borrowers rarely default in the sample. With

so few observed defaults, the estimated sensitivity of default risk to payment size becomes

highly uncertain, which translates directly into imprecise β estimates. This is not so bad of a

defect, however, considering that for very safe credit risks, this sufficient statistics method is

not actually necessary: without default, credit is not rationed, and the marginal interest rate

that such individuals borrow or save at is able to reveal their discount rates.

The heterogeneity patterns reveal several noteworthy findings. Firstly, the slope of β

across credit scores is relatively flat. Despite the large variation in default rates across scores,
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the estimated discount factor shows almost no systematic slope with respect to credit score.

This suggests that the well-established empirical fact that low-score individuals default more

frequently cannot be attributed to greater impatience. Instead, other forces—such as higher

volatility in income, lower financial buffers, or lower perceived penalties of default—must

account for the strong relationship between score and default risk. Impatience does not appear

to be the primary mechanism.

Secondly, the slope of β across income ventiles is very sharp. Lower-income borrowers are

estimated to have meaningfully lower β, consistent with substantially higher impatience (or

higher effective discount rates). This upward gradient in β is statistically significant – I can,

for example, reject the null that the first and third ventiles have the same discount rate.

Overall, the results imply that differences in default rates across credit scores do not reflect

systematic differences in time preference, but that differences across income levels do reflect

economically meaningful variation in discount factors. Low-income individuals discount the

future more heavily, consistent with tighter liquidity, higher risk exposure, or higher marginal

utility of present consumption.

These findings have implications for credit modeling, welfare analysis, and the design

of repayment contracts. In particular, they suggest that variation in impatience is correlated

more strongly with income—a measure of economic constraint—than with credit score, which

more directly reflects historical credit behavior but is not found using this methodology to be

correlated with impatience.

6 Extensions

6.1 Non-Time-Separable Utility

The baseline model analyzed in Section 4 assumed that utility is time-separable with iden-

tical utility functions in each period. However, numerous failures of time-separable utility

functions in explaining asset pricing phenomena have led to the use of more sophisticated
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models where utility is not time separable, the most popular of which is the Epstein-Zin-

Kreps-Porteus (“EZKP” hereafter) utility function (Kreps and Porteus (1978), Epstein and Zin

(1991)).

The EZKP utility function is given by

Ut = {(1 − β)C
1− 1

ψ

t + β
(

EtU
1−γ
t+1

) 1− 1
ψ

1−γ }
1

1− 1
ψ (16)

Notationally, θ is also used to denote 1−γ

1− 1
ψ

(Campbell (2018), Epstein and Zin (1991)).9

In a representative-agent economy characterized by such preferences, as well as ho-

moskedastic and jointly lognormal asset returns and consumption growth (assumptions I

make hereafter in this section), the risk-free short rate is

r f ,t+1 = − log β +
1
ψ

Et [log ct+1 − log ct]−
θ

2ψ2 σ2
c +

θ − 1
2

σ2
w

Where σ2
c is the variance of the innovation in log consumption and σ2

w is the innovation

in the log return on wealth (Campbell (2018)). Adapting Equation 5 to separate IES and risk

aversion requires only a few edits to this equation. For one, the “Steinbeck Critique” term

(Et[Lt+1]− Lt) is now scaled by 1/ψ instead of γ, and secondarily, an additional term appears

to account for the additional impact of future uncertainty:

β = exp−(r − 1
ψ
(Et[Lt+1]− Lt) +

θ

2ψ2 σL) (17)

This equation can be taken to the data in analogous fashion to the exercise in Section 3.

7 Conclusion

For such a fundamental object in the study of finance as the time value of money, existing

approaches to measuring it and its distribution in large populations overwhelmingly rely

9 Interestingly, when Epstein and Zin first calibrated this model using GMM, they consistently obtained negative
estimates of time preference (β > 1) and expressed their puzzlement at this finding (Epstein and Zin (1991)).
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on market prices of instruments traded almost entirely by the richest people in the world.

This paper develops new empirical methods for measuring household time preferences in

environments where traditional asset-market approaches fail. Because most households do

not meaningfully participate in the market for risk-free or even risky financial assets, the prices

of publicly traded instruments reveal almost nothing about the intertemporal preferences of

the median or modal American household. Instead, the relevant revealed-preference margin

for the vast majority of citizens lies on the liability side of their balance sheets. Credit, not

investment, is the primary domain in which households express their intertemporal tradeoffs.

The central contribution of this paper is to articulate and implement two complementary

identification strategies that leverage this fact. The first strategy uses the interest rates

households are willing to pay as lower bounds on their subjective discount rates. Because credit

products are discrete and rationed, observed borrowing rates lie weakly below individuals’

true marginal rates of intertemporal substitution. The second strategy uses the sensitivity

of default to short- vs. long-run changes in repayment obligations to point-identify the discount

factor. In an endogenous-default model with concave and time-separable utility, the ratio of

these repayment sensitivities is a sufficient statistic for the discount rate. The sign, magnitude,

and interpretation of these sensitivities are transparent, robust, and directly connected to

empirical moments measured in existing quasi-experimental and experimental studies.

Across both approaches, I find that most households are substantially more impatient

than is typically assumed in macroeconomic, household finance, and public finance applica-

tions. The median household discounts future utility at rates far exceeding those implied by

Treasury yields or representative-agent calibrations. Even after adjusting for consumption-

smoothing motives using a state-of-the-art income process, impatience remains large. These

findings support the view that a significant share of intertemporal credit demand reflects true

impatience rather than expectations of rising future income or volatility-driven smoothing

motives.

A second major finding concerns the distribution of time preferences. The heterogeneity

analysis reveals two sharp patterns. First, impatience rises steeply as income falls: low-income
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households value current consumption far more heavily relative to the future. Second, impa-

tience is nearly orthogonal to credit score, once one conditions on income. This distinction is

conceptually important. Credit scores predict default risk, but default risk is not the same as

impatience – indeed, the results here suggests that they are not even correlated in the popu-

lation. This iimplies that the link between credit score and default emerges largely through

other factors which may include income volatility, lack of access to savings technologies, lack

of financial education, or differing nonpecuniary costs of default – not through differences

in discount factors. These results suggest that many models and policy narratives which at-

tribute high default rates among low-score borrowers to high impatience may be misspecified.

The data support a more nuanced decomposition: low income predicts impatience whereas

low score predicts risk.

The implications of these findings are wide-ranging. First, the results have strong implica-

tions for public finance. The United States federal government, following OMB guidelines,

applies a social discount rate near 2–3 percent. But if a large share of the population has

discount factors near 0.8 or below at annual frequency, then policies involving intertemporal

redistribution—from the present to the future, or vice versa—have sharply different welfare

implications depending on whose preferences are considered normative. For example, as Hen-

dren and Sprung-Keyser (2020) emphasize, the relative value of early-childhood versus adult

human-capital policies depends critically on the chosen discount rate. If actual household

discounting is far higher than official rates, then policies delivering longer-run payoffs may

appear more attractive to planners than they do to the citizens they aim to serve. This raises

normative questions about paternalism, welfare weights, and the appropriate aggregation of

heterogeneous time preferences.

Second, the results speak directly to the design of consumer credit markets. If a substantial

share of households discounts the future extremely heavily, then long-dated repayment relief

(e.g., mortgage principal reduction, long-horizon loan extensions) may have limited effects

on default behavior, whereas short-term payment relief may have large effects. The con-

trast between the credit-card and mortgage modification results—once adjusted for horizon
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lengths—supports this view. This has operational consequences for delinquency manage-

ment, loss mitigation, and the structuring of hardship programs. Understanding impatience

is essential for designing contracts that support sustainable repayment among financially

constrained borrowers.

Third, the findings speak to broader questions in macroeconomics and political economy.

If the representative citizen is much more impatient than the representative investor, then

political pressure to favor present consumption over future investment—including impatience

for taxation, infrastructure maintenance, climate mitigation, or public debt reduction—may

not be a puzzle at all. Rather, such preferences may reflect the intertemporal tastes of the

median voter. The divergence between asset-market discount rates (revealed by patient

wealthy investors) and population discount rates (revealed in repayment behavior) has deep

implications for how economists interpret intertemporal policy choices in democratic societies.

Fourth, the analysis informs ethical debates about intergenerational equity and the ap-

praisal of long-run public projects. Climate policy, infrastructure renewal, and investments in

basic research involve tradeoffs spanning decades. If policymakers adopt social discount rates

far below the revealed-preference rates of the median household, they face a philosophical

tension: which preferences—those of patient asset holders or those of impatient borrow-

ers—should guide social decision-making? This issue is inherently normative, but empirical

measurement of heterogeneity in impatience, as provided here, is essential for grounding

such normative debates in the lived behavior of actual households.

Finally, the analysis suggests several fruitful directions for future research. One avenue is

to combine the sufficient-statistics approach with structural heterogeneity models to jointly

estimate discount factors, risk preferences, and expectations. Another is to investigate the

intergenerational transmission of impatience, including whether discount rates correlate with

family background, financial education, or exposure to financial shocks. A third is to embed

the repayment-based discount-rate estimates into heterogeneous-agent macroeconomic mod-

els with borrowing constraints, to study how impatience shapes macroeconomic volatility,

savings behavior, and the propagation of business cycles. A final and particularly intriguing
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direction is to explore normative frameworks that incorporate heterogeneous time preferences

more explicitly, acknowledging that societies may face genuine heterogeneity in how citizens

value the future.

In summary, I find that the majority of households are significantly more impatient than

would be suggested by treasury rates. Adjusting for consumption-smoothing demand does

very little to change this, as most households in surveys are actually quite pessimistic about

short- to medium-term income growth. This implies that we should take seriously the

ramifications, for political and economic behavior, of the fact that the vast majority of U.S.

citizens are far more impatient than the marginal asset market investor. It also implies that

when designing asset pricing models to make inferences about the macroeconomy based

on asset market data, we should be careful to remember that the marginal investor in these

markets is not nearly representative of the U.S. population on an equal-weighted basis. In

sum, the evidence in this paper suggests that the time preferences of the median American

household differ sharply from those inferred from asset markets, and that impatience plays a

first-order role in household financial decisions. Recognizing and appropriately modeling this

impatience is crucial for positive and normative research across macroeconomics, household

finance, public finance, and political economy. By developing tools to measure discount

factors outside asset markets, and by applying them at scale, this paper aims to provide a

foundation for a more empirically grounded understanding of intertemporal preferences in

the broader population.
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Appendices

A Proofs

This appendix provides a complete derivation of the comparative statics that characterize
how the first-period default probability responds to changes in (i) the total loan balance L and
(ii) the periodic payment m. These results are stated in equation (10) in the main text. Here, I
derive them in full, beginning from the definition of the optimal default threshold.

A.1 Setup and Default Threshold

The borrower chooses whether to default in period t = 1 by comparing:

VP
1 (y1) = u(y1 − m) + β

[∫ ∞

y∗2
u(y2 − (L − m))dF(y2 | y1) +

∫ y∗2

0
(u(y2)− σ)dF(y2 | y1)

]
and

VN
1 (y1) = u(y1) + β(u(y2)− σ).

The period-1 default threshold y∗1 satisfies:

VP
1 (y∗1) = VN

1 (y∗1). (18)

Differentiating this identity with respect to a contract parameter (either L or m) yields the
sensitivity of y∗1 , and therefore of the default probability

p1 = F(y∗1).

Because p1 = F(y∗1), I have:

∂p1

∂x
= f (y∗1)

∂y∗1
∂x

, x ∈ {L, m}. (19)

Thus, the core task is to compute ∂y∗1/∂x.

A.2 Differentiating the Threshold Condition

Rewrite (18) as:
∆(y1; L, m) ≡ VP

1 (y1)− VN
1 (y1) = 0

at y1 = y∗1 .
Implicit differentiation gives:

∂y∗1
∂x

= − ∂∆/∂x
∂∆/∂y1

.

I compute each term in turn.
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A.3 Derivative with Respect to y1

Because CP
1 = y1 − m, CN

1 = y1, and future values do not depend on y1, I have:

∂

∂y1
∆(y1; L, m) = u′(y1 − m)− u′(y1) ≡ u′(CP

1 )− u′(CN
1 ).

Evaluated at the threshold:

∂∆/∂y1 = u′(CP∗
1 )− u′(CN∗

1 ).

Because u is concave, the denominator is negative, as expected.

A.4 Derivative with Respect to L

Only the continuation value depends on L. Differentiating the present-value expression:

∂VP
1

∂L
= β

∫ ∞

y∗2

(
−u′(y2 − (L − m))

)
dF(y2 | y1).

There is no dependence on L in VN
1 , so:

∂∆
∂L

= β
∫ ∞

y∗2

(
−u′(CP

2 (y2))
)

dF(y2 | y1).

Pulling out the conditional expectation:

∂∆
∂L

= −β(1 − p2)E
[
u′(CP

2 (y2))
∣∣∣ y2 > y∗2

]
,

where p2 = F(y∗2) is the second-period default probability.
Plugging into (A.2) and then into (19) yields:

∂p1

∂L
= f (y∗1)β(1 − p2)

E[u′(CP
2 (y2)) | y2 > y∗2 ]

u′(CP∗
1 )− u′(CN∗

1 )
.

This is the first line of equation (10).

A.5 Derivative with Respect to m

The payment m affects both current consumption and the future balance term L − m.
Compute each contribution:

(i) Direct effect on CP
1 :

∂

∂m
u(CP

1 ) = −u′(CP
1 ).
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(ii) Effect on continuation value through (L − m):

∂

∂m
u(y2 − (L − m)) = +u′(CP

2 (y2)).

Thus:
∂∆
∂m

= −u′(CP
1 ) + β(1 − p2)E[u′(CP

2 (y2)) | y2 > y∗2 ].

Observe that the second term is exactly the negative of the expression for ∂∆/∂L:

∂∆
∂m

= −u′(CP
1 )−

∂∆
∂L

.

Plugging into (A.2) and (19) yields:

∂p1

∂m
= f (y∗1)

u′(CP
1 )

u′(CP∗
1 )− u′(CN∗

1 )
− ∂p1

∂L
.

This is the second line of equation (10).

A.6 Discussion

The structure of these expressions highlights the intuition: increasing L worsens future
consumption while holding current consumption fixed; increasing m worsens current con-
sumption while reducing future obligations. The relative strength of these channels produces
a clean revealed-preference mapping into the discount factor.
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B Additional Figures

Figure A1: Distribution of Liabilities
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Notes: The x-axis is scaled by SCF survey weights, as are the average values within each percentile bin.
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C Lifecycle Model Calibration

First, I calculate the common component g(t) of the log-earnings profile of age for workers
between 24 and 66 years of age. t = age − 24. Following Guvenen et al. (2021), I estimate this
as a quadratic function of age using Ordinary Least Squares for workers between ages 24 and
66. For unemployed workers, I use expected income (x7362) when available, and exclude
workers with zero expected income (i.e. who are not searching for work). The estimating
equation is:

log(Incomeit) = g0 + g1t + g2t2 + εit

The estimated parameters are

g0 10.7
g1 0.0537
g2 -0.000718

The parameters for the full life-cycle model estimated in Guvenen et al. (2021), also used
in Catherine et al. (Forthcoming), are as follows:

Parameter Value

ρ 0.959
pz 40.7%
µη,1 -0.085
ση,1 0.364
ση,2 0.069
σz,1,0 0.714
λ 0.0001
pϵ 13.0%
µϵ,1 0.271
σϵ,1 0.285
σϵ,2 0.037
σα 0.300
σβ·10 0.196
corrαβ 0.768
aν·1 -3.353
bν·t -0.859
cν·zt -5.034
dν·t·zt -2.895
az1·1 0.407

Table B1: Guvenen Parameters

For the purposes of applying this process to SCF data at the individual level, it is not
possible to exactly estimate the state variable Zi

t nor the individual idiosyncratic level and
slope variables αi and βi as doing so would require observing the full history of earnings.
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Moreover, for the purposes of this exercise, I am mainly interested in the expectation of
earnings growth,10 and in ensuring that (1) I do not underestimate this expectation, nor (2)
underestimate its heterogeneity in the population. To ensure this, I calcualate each earners’
age-adjusted idiosynratic earnings εL = log Lit − g(t) and then calculate their position in the
percentile distribution of εL. I then apply these percentiles to the distributions of αi and βi to
estimate these variables. Finally, I estimate the state variable as

E[Zi
t] = log Lit − g(t)− αi − βit

And estimated future earnings at the k-year horizon as

Et[Lt+k] = exp(ρkZit + αi + βi(t + k) + g(t + k))

This approach maximally preserves heterogeneity between individuals of the same age
while avoiding potential underestimation of future earnings expectation.

10 Recall the equation β = exp−(r − γ(Et[Lt+1]− Lt − σL)) and observe that ignoring σL will attenuate my
estimates of β, i.e. move them closer to 1.
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D Reference Materials

Figure C1: Social Discount Rates

Notes: These rate schedules are used by the UK and French governments, respectively, in cost-benefit
analysis. See Arrow et al. (2014).

Figure C2: Humorous Comic from Michael Thrower Chowdhury on X.com
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E Conditional Default Rate Calculations

I calculate the empirical conditional default probabilities using the following formula:

CDRd,m =
Wd,m

Od −
m−1

∑
k=1

Wd,k

Table C1: Definition of Terms for the Conditional Default Rate (CDR)

Symbol Definition
CDRd,m Conditional Default Rate for score decile d in month m
Wd,m Number of loans in decile d that default in month m
Od Total number of loans originated in decile d
∑m−1

k=1 Wd,k Cumulative number of defaults in decile d before month m
Od − ∑m−1

k=1 Wd,k Number of loans still active at the start of month m (the survivors)

I condition for both contract repayment term (in months) and credit score deciles. I
stress the importance of controlling for ex-ante credit risk in this procedure to the the risk of
heterogeneity in ex-ante credit risk biasing the estimate of β. Heterogeneity in ex-ante credit
risk causes the conditional default curve to slope down for spurious reasons: bad credit risks
default quickly, and good credit risks remain in the population, causing the conditional default
curve to slope down even if default decisions are completely due to innate characteristics
of heterogeneous individuals and do not involve an intertemporal decision whatsoever. To
address this concern I estimate the model separately on ex-ante credit risk strata and term
lengths. 56% of auto loans in the sample have repayment terms equal to either 36, 60, or 72
months, with 72 months being the most popular repayment period with over 25% of auto
loans being exactly 72 months in contract repayment term:
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The raw histogram summary of the timing-of-default data for 72-month auto loans without
conditioning on credit score:
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To condition on credit score, I split the data into deciles. To calculate the deciles, I focus on
the distribution of ex-post defaulters. After conditioning on credit risk:
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The ventiles are:
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Table C2: Score Decile Breakpoints

decile lower upper
1 0 466
2 466 505
3 505 529
4 529 549
5 549 566
6 566 583
7 583 602
8 602 624
9 624 657

10 657 850
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After transforming them into conditional default rates,
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F Delta Method Calculations

I calculate standard errors using the delta method, incorporating sampling-based uncertainty
in my estimates of both comparative statics and T. The estimand is βcumulative, which I
hereafter call simply β:

β =

(
∂p1
∂L

∂p1
∂m + ∂p1

∂L

)1/T

. (20)

For notational convenience, let

A ≡ ∂p1

∂L
, B ≡ ∂p1

∂m
, R ≡ A

A + B

so that β = R1/T.
Using the delta method, the asymptotic variance of β̂ is approximated by

V̂ar(β̂) ≈ ∇θ β(θ̂)′ V̂ar(θ̂)∇θ β(θ̂), where θ = (A, B, T)′. (21)

The corresponding standard error is

se(β̂) =

√
V̂ar(β̂).

The gradient vector ∇θ β contains the partial derivatives of β with respect to (A, B, T),
which are obtained analytically as:

∂β

∂A
= β · 1

T
· B

A(A + B)
, (22)

∂β

∂B
= β · 1

T
·
(
− 1

A + B

)
, (23)

∂β

∂T
= β ·

(
− ln R

T2

)
. (24)

Let the estimated variance–covariance matrix of (Â, B̂, T̂) be

V̂ar(θ̂) =

 σ2
A σAB σAT

σAB σ2
B σBT

σAT σBT σ2
T

 .
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Then, the delta-method variance of β̂ is

V̂ar(β̂) ≈
(

β
1
T

B
A(A + B)

)2

σ2
A +

(
β

1
T

1
A + B

)2

σ2
B +

(
β

ln R
T2

)2

σ2
T

+ 2
(

β
1
T

B
A(A + B)

)(
β

1
T

(
− 1

A + B

))
σAB

+ 2
(

β
1
T

B
A(A + B)

)(
β

(
− ln R

T2

))
σAT

+ 2
(

β
1
T

(
− 1

A + B

))(
β

(
− ln R

T2

))
σBT. (25)

The three inputs (A, B, T) are estimated independently in separate models. The covariance
terms are assumed to be zero, so this simplifies to:

V̂ar(β̂) ≈ β2

[
1

T2

(
B

A(A + B)

)2

σ2
A +

1
T2

(
1

A + B

)2

σ2
B +

(ln R)2

T4 σ2
T

]
. (26)

The corresponding standard error is therefore

se(β̂) = β

√
1

T2

(
B

A(A + B)

)2

σ2
A +

1
T2

(
1

A + B

)2

σ2
B +

(ln R)2

T4 σ2
T.
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