

Arbitrary Prices in Generalized Bertrand Competition

Joseph Hall

May 23, 2019

Problem: Consider a Generalized Bertrand Competition game. There are N firms indexed by i , each with cost c_i . They simultaneously announce prices p_i and realize demand $q_i(p_i, p_{-i})$, which is a function both of their own price, and other firms' prices. Their profits are

$$\pi_i(p_i, p_{-i}) = q_i(p_i, p_{-i})(p_i - c_i)$$

Construct demand functions q_i such that it is a Nash Equilibrium for each firm to announce the same price $p_i = p$ **for any price** $p > c_i \forall i$.

The demand functions should satisfy the Law of Demand:

$$\frac{\partial q_i}{\partial p_i} < 0$$

And the firms' products should be substitutes:

$$\frac{\partial q_i}{\partial p_{-i}} > 0$$

Solution: Take the first-order condition with respect to p_i :

$$\frac{\partial \pi_i}{\partial p_i} = q_i + \frac{\partial q_i}{\partial p_i}(p_i - c_i) = 0$$

We seek an equilibrium where all firms set the same price. So we will conjecture that this equation will be solved by $p_i = p$ when all other prices $p_j = p \forall j \neq i$. To do this, conjecture that the optimal p_i is some function of p_{-i} such that the function evaluates to p if all arguments (the other prices) are p . Many functions will work here, but the most natural is simply the average function:

$$p_i = \bar{p}_{-i} \equiv \frac{1}{N-1} \sum_{j \neq i} p_j$$

Substitute this into the F.O.C.:

$$0 = q_i + \frac{\partial q_i}{\partial p_i} (\bar{p}_{-i} - c_i)$$

$$\frac{\partial q_i}{\partial p_i} = -\frac{q_i}{(\bar{p}_{-i} - c_i)}$$

This is a first-order O.D.E. with a simple solution

$$q_i(p_i, p_{-i}) = \exp\left(-\frac{p_i}{\bar{p}_{-i} - c_i}\right)$$

This is the solution to the problem. The remaining work is simply to formally validate what may seem obvious by inspecting the equation.

The function is maximized, not minimized, at \bar{p}_{-i} , as it is continuous and fulfills the Second-Order Condition:

$$\begin{aligned} \frac{\partial^2 \pi_i}{\partial p_i^2} &= \frac{\partial q_i}{\partial p_i} + \frac{\partial q_i}{\partial p_i} + \frac{\partial^2 q_i}{\partial p_i^2} (p_i - c_i) \\ &= -\frac{2}{\bar{p}_{-i} - c_i} \exp\left(-\frac{p_i}{\bar{p}_{-i} - c_i}\right) + \left(\frac{1}{\bar{p}_{-i} - c_i}\right)^2 \exp\left(-\frac{p_i}{\bar{p}_{-i} - c_i}\right) (p_i - c_i) \\ &= \left((p_i - c_i) \left(\frac{1}{\bar{p}_{-i} - c_i}\right)^2 - \frac{2}{\bar{p}_{-i} - c_i}\right) \exp\left(-\frac{p_i}{\bar{p}_{-i} - c_i}\right) \\ &= \left(\frac{1}{p_i - c_i} - \frac{2}{p_i - c_i}\right) \exp\left(-\frac{p_i}{p_i - c_i}\right) \\ &= -\frac{1}{p_i - c_i} \exp\left(-\frac{p_i}{p_i - c_i}\right) < 0 \end{aligned}$$

For the fourth line above, recall that $\bar{p}_{-i} = p_i$.

It satisfies the Law of Demand:

$$\frac{\partial q_i}{\partial p_i} = -\frac{1}{\bar{p}_{-i} - c_i} \exp\left(-\frac{p_i}{\bar{p}_{-i} - c_i}\right) < 0$$

And the products are substitutes:

$$\begin{aligned}
\frac{\partial q_i}{\partial p_{j \neq i}} &= \frac{\partial}{\partial p_j} \exp \left(-\frac{p_i}{\frac{1}{N-1}p_j + \frac{N-2}{N-1}p_i - c_i} \right) \\
&= -\exp \left(-\frac{p_i}{\frac{1}{N-1}p_j + \frac{N-2}{N-1}p_i - c_i} \right) \frac{\partial}{\partial p_j} \left(\frac{p_i}{\frac{1}{N-1}p_j + \frac{N-2}{N-1}p_i - c_i} \right) \\
&= -\exp \left(-\frac{p_i}{\frac{1}{N-1}p_j + \frac{N-2}{N-1}p_i - c_i} \right) \left(\frac{-\frac{1}{N-1}p_i}{\left(\frac{1}{N-1}p_j + \frac{N-2}{N-1}p_i - c_i \right)^2} \right) \\
&= (N-1) \frac{p_i}{(\bar{p}_i - c_i)^2} \exp \left(-\frac{p_i}{\bar{p}_i - c_i} \right) > 0
\end{aligned}$$

Q.E.D.