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Problem: Consider a Generalized Bertrand Competition game. There are IV firms indexed by i, each with
cost ¢;. They simultaneously announce prices p; and realize demand ¢; (p;, p—;), which is a function both of

their own price, and other firms’ prices. Their profits are

i (pis—i) = @i (i, p—i) (Di — ¢i)

Construct demand functions g; such that it is a Nash Equilibrium for each firm to announce the same price
p; = p for any price p > ¢;Vi.

The demand functions should satisfy the Law of Demand:
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And the firms’ products should be substitutes:
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Solution: Take the first-order condition with respect to p;:
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We seek an equilibrium where alll firms set the same price. So we will conjecture that this equation will be
solved by p; = p when all other prices p; = pVj # i. To do this, conjecture that the optimal p; is some
function of p_; such that the function evaluates to p if all arguments (the other prices) are p. Many functions

will work here, but the most natural is simply the average function:
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Substitute this into the F.O.C.:
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This is a first-order O.D.E. with a simple solution
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This is the solution to the problem. The remaining work is simply to formally validate what may seem

obvious by inspecting the equation.

The function is maximized, not minimized, at p_,, as it is continuous and fulfills the Second-Order Condition:
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For the fourth line above, recall that p_, = p;.

It satisfies the Law of Demand:
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And the products are substitutes:



Q.E.D.




